首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   13篇
  国内免费   16篇
  2024年   4篇
  2023年   4篇
  2022年   17篇
  2021年   13篇
  2020年   4篇
  2019年   8篇
  2018年   8篇
  2017年   9篇
  2016年   11篇
  2015年   5篇
  2014年   9篇
  2013年   9篇
  2012年   11篇
  2011年   8篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1992年   1篇
  1988年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
1.
The migrasome is a new organelle discovered by Professor Yu Li in 2015. When cells migrate, the membranous organelles that appear at the end of the retraction fibres are migrasomes. With the migration of cells, the retraction fibres which connect migrasomes and cells finally break. The migrasomes detach from the cell and are released into the extracellular space or directly absorbed by the recipient cell. The cytoplasmic contents are first transported to the migrasome and then released from the cell through the migrasome. This release mechanism, which depends on cell migration, is named ‘migracytosis’. The main components of the migrasome are extracellular vesicles after they leave the cell, which are easy to remind people of the current hot topic of exosomes. Exosomes are extracellular vesicles wrapped by the lipid bimolecular layer. With extensive research, exosomes have solved many disease problems. This review summarizes the differences between migrasomes and exosomes in size, composition, property and function, extraction method and regulation mechanism for generation and release. At the same time, it also prospects for the current hotspot of migrasomes, hoping to provide literature support for further research on the generation and release mechanism of migrasomes and their clinical application in the future.  相似文献   
2.
Li C  Li Y  Xu J  Lv J  Ma Y  Shao T  Gong B  Tan R  Xiao Y  Li X 《Gene》2011,489(2):119-129
Detection of the synergetic effects between variants, such as single-nucleotide polymorphisms (SNPs), is crucial for understanding the genetic characters of complex diseases. Here, we proposed a two-step approach to detect differentially inherited SNP modules (synergetic SNP units) from a SNP network. First, SNP-SNP interactions are identified based on prior biological knowledge, such as their adjacency on the chromosome or degree of relatedness between the functional relationships of their genes. These interactions form SNP networks. Second, disease-risk SNP modules (or sub-networks) are prioritised by their differentially inherited properties in IBD (Identity by Descent) profiles of affected and unaffected sibpairs. The search process is driven by the disease information and follows the structure of a SNP network. Simulation studies have indicated that this approach achieves high accuracy and a low false-positive rate in the identification of known disease-susceptible SNPs. Applying this method to an alcoholism dataset, we found that flexible patterns of susceptible SNP combinations do play a role in complex diseases, and some known genes were detected through these risk SNP modules. One example is GRM7, a known alcoholism gene successfully detected by a SNP module comprised of two SNPs, but neither of the two SNPs was significantly associated with the disease in single-locus analysis. These identified genes are also enriched in some pathways associated with alcoholism, including the calcium signalling pathway, axon guidance and neuroactive ligand-receptor interaction. The integration of network biology and genetic analysis provides putative functional bridges between genetic variants and candidate genes or pathways, thereby providing new insight into the aetiology of complex diseases.  相似文献   
3.
4.
5.
The utilization of high-voltage intercalation cathodes in calcium-ion batteries (CIBs) is impeded by the substantial size and divalent character of Ca2+ ions, which result in pronounced volume alterations and sluggish ion mobility, consequently causing inferior reversibility and low energy/power densities. To tackle these issues, polyanionic K-vacant KxVPO4F (x∼0, designated as K0VPF) is proposed as high-voltage and ultra-stable cathode material in CIBs. The K0VPF demonstrates a decent calcium storage capacity of 75 mAh g−1 at 10 mA g−1 and remarkable capacity retention of 84.2% over 1000 cycles. The average working voltage of the K0VPF is 3.85 V versus Ca2+/Ca, representing the highest value reported for CIB cathodes to date. The combined experimental and theoretical investigations revealed that the low volume changes and hopping diffusion barriers contribute to the extraordinary stability and high-power capabilities, respectively, of K0VPF. The distribution of Ca ions into polyanionic frameworks with pronounced spatial separation effectively attenuates the Ca2+–Ca2+ repulsive force and thus augmenting the Ca migration kinetics. The high voltage of K0VPF is attributed to the inductive effect from the largely electronegative fluorine. In conjunction with a calcium metal anode and a compatible electrolyte, Ca metal full cells featured a record-high energy density of ≈300 Wh kg−1.  相似文献   
6.
Pattern recognition receptors(PRRs) sense ligands in pattern-triggered immunity(PTI). Plant PRRs include numerous receptor-like proteins(RLPs), but many RLPs remain functionally uncharacterized. Here, we examine an Arabidopsis thaliana RLP, RLP53, which positively regulates immune signaling. Our forward genetic screen for suppressors of enhanced disease resistance1(edr1) identified a point mutation in RLP53 that fully suppresses disease resistance and mildewinduced cell death in edr1 mutants. Th...  相似文献   
7.
Chu  Qing  Xu  Tianjun  Zheng  Weiwei  Chang  Renjie  Zhang  Lei 《中国科学:生命科学英文版》2021,64(7):1131-1148
Viral infection induces the initiation of antiviral effectors and cytokines which are critical mediators of innate antiviral responses.The critical molecular determinants are responsible for triggering an appropriate immune response. Long noncoding RNAs(lncRNAs) have emerged as new gene modulators involved in various biological processes, while how lncRNAs operate in lower vertebrates are still unknown. Here, we discover a long noncoding RNA, termed antiviral-associated long noncoding RNA(AANCR), as a novel regulator for innate antiviral responses in teleost fish. The results indicate that fish MITA plays an essential role in host antiviral responses and inhibition of Siniperca chuatsi rhabdovirus(SCRV) production. miR-210 reduces MITA expression and suppress MITA-mediated antiviral responses, which may help viruses evade host antiviral responses. Further,AANCR functions as a competing endogenous RNA(ceRNA) for miR-210 to control protein abundance of MITA, thereby inhibiting SCRV replication and promoting antiviral responses. Our data not only shed new light on understanding the function role of lncRNA in biological processes in teleost fish, but confirmed the hypothesis that ceRNA networks exist widely in vertebrates.  相似文献   
8.
Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the optimization of pretreatment of municipal wastewater and aeration conditions in order to enhance the lipid productivity of Scenedesmus obliquus. Results showed that no significant differences were recorded in lipid productivity of S. obliquus grown in primary settled or sterilized municipal wastewater; however, ultrasound pretreatment of wastewater significantly decreased the lipid production. Whereas, aeration rates of 0.2 vvm significantly increased lipid content by 51 %, with respect to the non-aerated culture, which resulted in maximum lipid productivity (32.5 mg L?1 day?1). Furthermore, aeration enrichment by 2 % CO2 resulted in increase of lipid productivity by 46 % over the CO2 non-enriched aerated culture. Fatty acid profile showed that optimized aeration significantly enhanced monounsaturated fatty acid production, composed mainly of C18:1, by 1.8 times over the non-aerated S. obliquus culture with insignificant changes in polyunsaturated fatty acid proportion; suggesting better biodiesel characteristics for the optimized culture.  相似文献   
9.
High lipid content in microalgae is an essential parameter for adopting of microalgal biomass as a feedstock for biodiesel. Mutation is one approach to obtain desired algal strain with high lipid production. In this study, a mutant strain of Chlorella pyrenoidosa was isolated using 1.5?×?1015 ions cm?2 s?1 of N+ ion beam implantation technique, which has been widely used in mutagenesis of agricultural crops. N+ implantation slightly improved the growth of the mutant over the corresponding wild strain with significant increase in lipid content (32.4 % higher than the wild strain), which resulted in significant increase in lipid productivity by 35 %. In addition, ion implantation mutagenesis of C. pyrenoidosa resulted in 21.4 % decrease in total saturated fatty acids (SFAs) compared to the wild type, with a noticeable increase in polyunsaturated fatty acids (PUFAs). The increase in PUFAs was due mainly to stimulation of hexadecadienoic acid (C16:2) and octadecadienoic acid (C18:2) production. However, the SFA content of wild and mutant strains was 31.7 and 24.9 % of total fatty acids, respectively, highlighting the oxidative stability of biodiesel produced by both strains according to the European standards. Cultivation of C. pyrenoidosa mutant in selenite enrichment medium for five successive cultivation experiments showed insignificant changes in biomass productivity, lipid content, and lipid productivity alongside the study period, which confirms the genetic stability of the produced mutant. The present study confirmed the feasibility of generation of microalgae mutants with significant high lipid production using ion beam implantation.  相似文献   
10.
Autophagy has been evolved as one of the adaptive cellular processes in response to stresses such as nutrient deprivation. Various cellular cargos such as damaged organelles and protein aggregates can be selectively degraded through autophagy. Recently, the lipid storage organelle, lipid droplet(LD), has been reported to be the cargo of starvation-induced autophagy. However, it remains largely unknown how the autophagy machinery recognizes the LDs and whether it can selectively degrade LDs. In this study, we show that Drosophila histone deacetylase 6(dHDAC6), a key regulator of selective autophagy, is required for the LD turnover in the hepatocyte-like oenocytes in response to starvation. HDAC6 regulates LD turnover via p62/SQSTM1(sequestosome 1)-mediated aggresome formation, suggesting that the selective autophagy machinery is required for LD recognition and degradation. Furthermore, our results show that the loss of dHDAC6 causes steatosis in response to starvation. Our findings suggest that there is a potential link between selective autophagy and susceptible predisposition to lipid metabolism associated diseases in stress conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号