首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2014年   1篇
  2013年   1篇
  2007年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
Human immunodeficiency virus genome dimerization is initiated through an RNA–RNA kissing interaction formed via the dimerization initiation site (DIS) loop sequence, which has been proposed to be converted to a more thermodynamically stable linkage by the viral p7 form of the nucleocapsid protein (NC). Here, we systematically probed the role of specific amino acids of NCp7 in its chaperone activity in the DIS conversion using 2-aminopurine (2-AP) fluorescence and nuclear magnetic resonance spectroscopy. Through comparative analysis of NCp7 mutants, the presence of positively charged residues in the N-terminus was found to be essential for both helix destabilization and strand transfer functions. It was also observed that the presence and type of the Zn finger is important for NCp7 chaperone activity, but not the order of the Zn fingers. Swapping single aromatic residues between Zn fingers had a significant effect on NCp7 activity; however, these mutants did not exhibit the same activity as mutants in which the order of the Zn fingers was changed, indicating a functional role for other flanking residues. RNA chaperone activity is further correlated with NCp7 structure and interaction with RNA through comparative analysis of nuclear magnetic resonance spectra of NCp7 variants, and complexes of these proteins with the DIS dimer.  相似文献   
3.
Helix 69 (H69) is a 19-nt stem-loop region from the large subunit ribosomal RNA. Three pseudouridine (Ψ) modifications clustered in H69 are conserved across phylogeny and known to affect ribosome function. To explore the effects of Ψ on the conformations of Escherichia coli H69 in solution, nuclear magnetic resonance spectroscopy was used to reveal the structural differences between H69 with (ΨΨΨ) and without (UUU) Ψ modifications. Comparison of the two structures shows that H69 ΨΨΨ has the following unique features: (i) the loop region is closed by a Watson–Crick base pair between Ψ1911 and A1919, which is potentially reinforced by interactions involving Ψ1911N1H and (ii) Ψ modifications at loop residues 1915 and 1917 promote base stacking from Ψ1915 to A1918. In contrast, the H69 UUU loop region, which lacks Ψ modifications, is less organized. Structure modulation by Ψ leads to alteration in conformational behavior of the 5'' half of the H69 loop region, observed as broadening of C1914 non-exchangeable base proton resonances in the H69 ΨΨΨ nuclear magnetic resonance spectra, and plays an important biological role in establishing the ribosomal intersubunit bridge B2a and mediating translational fidelity.  相似文献   
4.
An interesting observation was found during our continued studies on the hydrolysis of ibuprofen esters by Candida rugosa lipase (CRL). An important role is played by pH in the stereospecific hydrolysis of these esters. The flap region of CRL plays a significant role in the access of the substrate to the active site of the enzyme. At pH 5.6, 48% of the methyl ester and 5% of the butyl ester of ibuprofen were hydrolysed in 5.5 h, whereas at pH 7.2, 9% of methyl ester and 45% of the butyl ester of ibuprofen was hydrolysed in a identical reaction time using CRL. This lead us to assume that CRL prefers the methyl ester of ibuprofen as a substrate at an acidic pH and the butyl ester of ibuprofen at a neutral pH. Therefore, in order to understand the role of pH in the substrate selection by CRL for the esters of ibuprofen we used the crystallographic coordinates of the open form of the CRL (1CRL) for molecular dynamics (MD) simulations under acidic and neutral conditions for 2 ns using GROMACS. The final structures obtained after simulation in acidic and neutral conditions were compared with the energy-minimized structure, and the root-mean-square deviations (r.m.s.ds) were calculated. The r.m.s.d. of the CRL flap at neutral pH was found to be greater than that of the CRL flap at acidic pH. The extent to which the flap opens at neutral pH allowed the bulkier substrate, the butyl ester of ibuprofen, to diffuse into the active site and provides the best enzyme-substrate fit for this specific substrate. At acidic pH there is a decreased opening of the flap thereby accommodating a more compact substrate, namely the methyl ester of ibuprofen. Thus, simulation experiments using MD provide reasonable insight for the pH-dependent substrate selectivity of CRL in aqueous environments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号