首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   5篇
  2013年   1篇
  2007年   1篇
  2005年   1篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
2.
The SET domain contains the catalytic center of lysine methyltransferases that target the N-terminal tails of histones and regulate chromatin function. Here we report the structure of the SET7/9 protein in the absence and presence of its cofactor product, S-adenosyl-L-homocysteine (AdoHcy). A knot within the SET domain helps form the methyltransferase active site, where AdoHcy binds and lysine methylation is likely to occur. A structure-guided comparison of sequences within the SET protein family suggests that the knot substructure and active site environment are conserved features of the SET domain.  相似文献   
3.
Ca2+-dependent nuclear export mediated by calreticulin   总被引:2,自引:0,他引:2       下载免费PDF全文
We have characterized a pathway for nuclear export of the glucocorticoid receptor (GR) in mammalian cells. This pathway involves the Ca2+ -binding protein calreticulin (CRT), which directly contacts the DNA binding domain (DBD) of GR and facilitates its delivery from the nucleus to the cytoplasm. In the present study, we investigated the role of Ca2+ in CRT-dependent export of GR. We found that removal of Ca2+ from CRT inhibits its capacity to stimulate the nuclear export of GR in digitonin-permeabilized cells and that the inhibition is due to the failure of Ca2+-free CRT to bind the DBD. These effects are reversible, since DBD binding and nuclear export can be restored by Ca2+ addition. Depletion of intracellular Ca2+ inhibits GR export in intact cells under conditions that do not inhibit other nuclear transport pathways, suggesting that there is a Ca2+ requirement for GR export in vivo. We also found that the Ran GTPase is not required for GR export. These data show that the nuclear export pathway used by steroid hormone receptors such as GR is distinct from the Crm1 pathway. We suggest that signaling events that increase Ca2+ could positively regulate CRT and inhibit GR function through nuclear export.  相似文献   
4.
5.
6.
7.
8.
Transglutaminase 3 (TGase 3) is a member of a family of Ca2+-dependent enzymes that catalyze covalent cross-linking reactions between proteins or peptides. TGase 3 isoform is widely expressed and is important for effective epithelial barrier formation in the assembly of the cell envelope. Among the nine TGase enzyme isoforms known in the human genome, only TGase 2 is known to bind and hydrolyze GTP to GDP; binding GTP inhibits its transamidation activity but allows it to function in signal transduction. Here we present biochemical and crystallographic evidence for the direct binding of GTP/GDP to the active TGase 3 enzyme, and we show that the TGase 3 enzyme undergoes a GTPase cycle. The crystal structures of active TGase 3 with guanosine 5'-O-(thiotriphosphate) (GTPgammaS) and GDP were determined to 2.1 and 1.9 A resolution, respectively. These studies reveal for the first time the reciprocal actions of Ca2+ and GTP with respect to TGase 3 activity. GTPgammaS binding is coordinated with the replacement of a bound Ca2+ with Mg2+ and conformational rearrangements that together close a central channel to the active site. Hydrolysis of GTP to GDP results in two stable conformations, resembling both the GTP state and the non-nucleotide bound state, the latter of which allows substrate access to the active site.  相似文献   
9.
The crystal structure of Escherichia coli tRNA (guanosine-1) methyltransferase (TrmD) complexed with S-adenosyl homocysteine (AdoHcy) has been determined at 2.5A resolution. TrmD, which methylates G37 of tRNAs containing the sequence G36pG37, is a homo-dimer. Each monomer consists of a C-terminal domain connected by a flexible linker to an N-terminal AdoMet-binding domain. The two bound AdoHcy moieties are buried at the bottom of deep clefts. The dimer structure appears integral to the formation of the catalytic center of the enzyme and this arrangement strongly suggests that the anticodon loop of tRNA fits into one of these clefts for methyl transfer to occur. In addition, adjacent hydrophobic sites in the cleft delineate a defined pocket, which may accommodate the GpG sequence during catalysis. The dimer contains two deep trefoil peptide knots and a peptide loop extending from each knot embraces the AdoHcy adenine ring. Mutational analyses demonstrate that the knot is important for AdoMet binding and catalytic activity, and that the C-terminal domain is not only required for tRNA binding but plays a functional role in catalytic activity.  相似文献   
10.
Plasticity of the ecdysone receptor DNA binding domain   总被引:3,自引:0,他引:3  
Ecdysteroids coordinate molting and metamorphosis in insects via a heterodimer of two nuclear receptors, the ecdysone receptor (EcR) and the ultraspiracle (Usp) protein. Here we show how the DNA-recognition alpha-helix and the T box region of the EcR DNA-binding domain (EcRDBD) contribute to the specific interaction with the natural response element and to the stabilization of the EcRDBD molecule. The data indicate a remarkable mutational tolerance with respect to the DNA-binding function of the EcRDBD. This is particularly manifested in the heterocomplexes formed between the EcRDBD mutants and the wild-type Usp DNA-binding domain (UspDBD). Circular dichroism (CD) spectra and protein unfolding experiments indicate that, in contrast to the UspDBD, the EcRDBD is characterized by a lower alpha-helix content and a lower stability. As such, the EcRDBD appears to be an intrinsically unstructured protein-like molecule with a high degree of intramolecular plasticity. Because recently published crystal structures indicate that the ligand binding domain of the EcR is also characterized by the extreme adaptability, we suggest that plasticity of the EcR domains may be a key factor that allows a single EcR molecule to mediate diverse biological effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号