首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   9篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2014年   3篇
  2013年   6篇
  2012年   11篇
  2011年   6篇
  2010年   8篇
  2009年   4篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   2篇
排序方式: 共有99条查询结果,搜索用时 140 毫秒
1.
2.
3.
The parabasalian symbionts of lower termite hindgut communities are well-known for their large size and structural complexity. The most complex forms evolved multiple times independently from smaller and simpler flagellates, but we know little of the diversity of these small flagellates or their phylogenetic relationships to more complex lineages. To understand the true diversity of Parabasalia and how their unique cellular complexity arose, more data from smaller and simpler flagellates are needed. Here, we describe two new genera of small-to-intermediate size and complexity, represented by the type species Cthulhu macrofasciculumque and Cthylla microfasciculumque from Prorhinotermes simplex and Reticulitermes virginicus, respectively (both hosts confirmed by DNA barcoding). Both genera have a single anterior nucleus embeded in a robust protruding axostyle, and an anterior bundle flagella (and likely a single posterior flagellum) that emerge slightly subanteriorly and have a distinctive beat pattern. Cthulhu is relatively large and has a distinctive bundle of over 20 flagella whereas Cthylla is smaller, has only 5 anterior flagella and closely resembles several other parababsalian genera. Molecular phylogenies based on small subunit ribosomal RNA (SSU rRNA) show both genera are related to previously unidentified environmental sequences from other termites (possibly from members of the Tricercomitidae), which all branch as sisters to the Hexamastigitae. Altogether, Cthulhu likely represents another independent origin of relatively high cellular complexity within parabasalia, and points to the need for molecular characterization of other key taxa, such as Tricercomitus.  相似文献   
4.
The tetrahydrobiopterin (BH4) cofactor is essential for the biosynthesis of catecholamines and serotonin and for nitric-oxide synthase (NOS). Alterations in BH4 metabolism are observed in various neurological and psychiatric diseases, and mutations in one of the human metabolic genes causes hyperphenylalaninemia and/or monoamine neurotransmitter deficiency. We report on a knockout mouse for the Pts gene, which codes for a BH4-biosynthetic enzyme. Homozygous Pts-/- mice developed with normal morphology but died after birth. Upon daily oral administration of BH4 and neurotransmitter precursors the Pts-/- mice eventually survived. However, at sexual maturity (6 weeks) the mice had only one-third of the normal body weight and were sexually immature. Biochemical analysis revealed no hyperphenylalaninemia, normal brain NOS activity, and almost normal serotonin levels, but brain dopamine was 3% of normal. Low dopamine leads to impaired food consumption as reflected by the severe growth deficiency and a 7-fold reduced serum insulin-like growth factor-1 (IGF-1). This is the first link shown between 6-pyruvoyltetrahydropterin synthase- or BH4-biosynthetic activity and IGF-1.  相似文献   
5.
6.
7.
At an abasic site in an oligo-DNA duplex, isoxanthopterin (IX)(dagger) can bind to thymine (T) and cytosine (C) with strong affinity compared to adenine and guanine, but the base selectivity for T against C is moderate. In order to improve both binding affinity and base selectivity for T against C, a methyl group is introduced to IX, which is known as 3-methyl isoxanthopterin (3-MIX),(dagger) by which binding affinity for C is expected to decrease. Indeed, 3-MIX specifically binds to T more strongly than IX and loses its binding affinity for C. The improved binding ability of 3-MIX for T would be suitable for the practical use in SNP typing related to T.  相似文献   
8.
The removal of damaged or unneeded proteins by ATP-dependent proteases is crucial for cell survival in all organisms. Integral components of ATP-dependent proteases are motor proteins that unfold stably folded proteins that have been targeted for removal. These protein unfoldases/polypeptide translocases use ATP to unfold the target proteins and translocate them into a proteolytic component. Despite the central role of these motor proteins in cell homeostasis, a number of important questions regarding the molecular mechanisms of enzyme catalyzed protein unfolding and translocation remain unanswered. Here, we demonstrate that Escherichia coli ClpA, in the absence of the proteolytic component ClpP, processively and directionally steps along the polypeptide backbone with a kinetic step size of ∼ 14 amino acids, independent of the concentration of ATP with a rate of ∼ 19 amino acids s−1 at saturating concentrations of ATP. In contrast to earlier studies by others, we have developed single-turnover fluorescence stopped-flow methods that allow us to quantitatively examine the molecular mechanism of the motor component ClpA decoupled from the proteolytic component ClpP. For the first time, we reveal that in the absence of ClpP ClpA translocates polypeptides directionally, processively and in discrete steps similar to other motor proteins that translocate vectorially on a linear lattice, such as nucleic acid helicases and kinesin. We believe that the methods employed here will be generally applicable to the examination of other AAA?+ protein translocases involved in a variety of important biological functions where the substrate is not covalently modified; for example, membrane fusion, membrane transport, protein disaggregation, and protein refolding.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号