首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20012篇
  免费   1556篇
  国内免费   3篇
  2023年   155篇
  2022年   283篇
  2021年   619篇
  2020年   452篇
  2019年   518篇
  2018年   694篇
  2017年   584篇
  2016年   900篇
  2015年   1114篇
  2014年   1230篇
  2013年   1414篇
  2012年   1670篇
  2011年   1495篇
  2010年   899篇
  2009年   839篇
  2008年   1066篇
  2007年   961篇
  2006年   889篇
  2005年   738篇
  2004年   687篇
  2003年   596篇
  2002年   560篇
  2001年   357篇
  2000年   304篇
  1999年   277篇
  1998年   167篇
  1997年   146篇
  1996年   127篇
  1995年   98篇
  1994年   108篇
  1993年   95篇
  1992年   139篇
  1991年   125篇
  1990年   90篇
  1989年   106篇
  1988年   81篇
  1987年   74篇
  1986年   88篇
  1985年   82篇
  1984年   78篇
  1983年   63篇
  1982年   61篇
  1981年   46篇
  1980年   35篇
  1979年   35篇
  1978年   57篇
  1977年   41篇
  1975年   45篇
  1974年   39篇
  1971年   30篇
排序方式: 共有10000条查询结果,搜索用时 420 毫秒
1.
A promising producer of bioactive compounds isolated from a Brazilian tropical soil was tested for its range of antimicrobial activities. Strain 606, classified as Streptomyces sp., could not be identified up to species level, suggesting a possible new taxon. The supernatant and 10 extracts and fractions, obtained by extraction and chromatographic techniques, presented antimicrobial activity using antibiograms. The methanolic fraction was highly active against pathogenic bacteria, phytopathogenic fungi and the human pathogenic yeast Candida albicans. It also possessed high antiviral activity inhibiting the propagation of an acyclovir-resistant herpes simplex virus type 1 strain on HEp-2 cells at non-cytotoxic concentration. The strong cytotoxic effect suggests an antitumour action. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
2.
3.
4.
5.
6.
Maturity Onset Diabetes of the Young (MODY) is a heterogeneous group of genetic diseases characterized by a primary defect in insulin secretion and hyperglycemia, non-ketotic disease, monogenic autosomal dominant mode of inheritance, age at onset less than 25 years, and lack of auto-antibodies. It accounts for 2–5% of all cases of non-type 1 diabetes. MODY subtype 2 is caused by mutations in the glucokinase (GCK) gene. In this study, we sequenced the GCK gene of two volunteers with clinical diagnosis for MODY2 and we were able to identify four mutations including one for a premature stop codon (c.76C>T). Based on these results, we have developed a specific PCR-RFLP assay to detect this mutation and tested 122 related volunteers from the same family. This mutation in the GCK gene was detected in 21 additional subjects who also had the clinical features of this genetic disease. In conclusion, we identified new GCK gene mutations in a Brazilian family of Italian descendance, with one due to a premature stop codon located in the second exon of the gene. We also developed a specific assay that is fast, cheap and reliable to detect this mutation. Finally, we built a molecular ancestry model based on our results for the migration of individuals carrying this genetic mutation from Northern Italy to Brazil.  相似文献   
7.
A review of in vitro mutagenesis assessment of metal compounds in mammalian and nonmammalian test systems has been compiled. Prokaryotic assays are ineffective or inconsistent in their detection of most metals as mutagens, with the notable exception of hexavalent chromium. Mammalian assay systems appear to be similarly inappropriate for the screening of metal compounds based upon the limited number of studies that have employed those compounds having known carcinogenic activity. Although of limited value as screening tests for the detection of potentially carcinogenic metal compounds, the well-characterized in vitro mutagenesis systems may prove to be of significant value as a means to elucidate mechanisms of metal genotoxicity.  相似文献   
8.
Biomechanics and Modeling in Mechanobiology - Cell migration is a process of crucial importance for the human body. It is responsible for important processes such as wound healing and tumor...  相似文献   
9.
The diet of the viperine snake was compared with food availability in the Ebro Delta, a wetland largely occupied by rice fields, in 1990 and 1991. Snake selection of prey type and size was studied seasonally and by snake group: males, females and immature snakes. Overall, feeding activity (percentage of individuals with prey and number of prey per stomach) increased with food availability. Diet analysis showed that viperine snakes mainly foraged on the green frog Rana perezi (adults and tadpoles) and the carp Cyprinus earpio. Conversely, viperine snakes rejected the mosquito fish Gambusia holbroki which is the most abundant species in autumn, when Natrix maura has a low feeding activity. Statistical comparisons between viperine snake diet and prey availability showed that males selected small carp, immature snakes selected tadpoles and, in spring, females selected frogs. The selection of small carp by males may reflect a sexual divergence of trophic niche related to sexual size dimorphism, as females are larger than males. As tadpoles are presumably easier to catch than fish, tadpole selection by immature individuals may reflect variance in capture abilities. In spring, the selection of frogs by females overlapped with vitellogenesis, suggesting that females compensate for the cost of reproduction by selecting green frogs, which have a greater biomass and higher energy content than fish. Carps eaten in spring were smaller than in summer. Moreover, in summer viperine snakes selected smaller carp than the available mean size. This divergent tendency between carp size selection and carp size availability reveals how seasonal diet shifts in prey size selection may be a response to an increase in prey size.  相似文献   
10.

In this review, we address the regulatory and toxic role of ·NO along several pathways, from the gut to the brain. Initially, we address the role on ·NO in the regulation of mitochondrial respiration with emphasis on the possible contribution to Parkinson’s disease via mechanisms that involve its interaction with a major dopamine metabolite, DOPAC. In parallel with initial discoveries of the inhibition of mitochondrial respiration by ·NO, it became clear the potential for toxic ·NO-mediated mechanisms involving the production of more reactive species and the post-translational modification of mitochondrial proteins. Accordingly, we have proposed a novel mechanism potentially leading to dopaminergic cell death, providing evidence that NO synergistically interact with DOPAC in promoting cell death via mechanisms that involve GSH depletion. The modulatory role of NO will be then briefly discussed as a master regulator on brain energy metabolism. The energy metabolism in the brain is central to the understanding of brain function and disease. The core role of ·NO in the regulation of brain metabolism and vascular responses is further substantiated by discussing its role as a mediator of neurovascular coupling, the increase in local microvessels blood flow in response to spatially restricted increase of neuronal activity. The many facets of NO as intracellular and intercellular messenger, conveying information associated with its spatial and temporal concentration dynamics, involve not only the discussion of its reactions and potential targets on a defined biological environment but also the regulation of its synthesis by the family of nitric oxide synthases. More recently, a novel pathway, out of control of NOS, has been the subject of a great deal of controversy, the nitrate:nitrite:NO pathway, adding new perspectives to ·NO biology. Thus, finally, this novel pathway will be addressed in connection with nitrate consumption in the diet and the beneficial effects of protein nitration by reactive nitrogen species.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号