首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  6篇
  2015年   3篇
  2013年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
2.
Malagasy poison frogs of the genus Mantella are diurnal and toxic amphibians of highly variable and largely aposematic coloration. Previous studies provided evidence for several instances of homoplastic colour evolution in this genus but were unable to sufficiently resolve relationships among major species groups or to clarify the phylogenetic position of several crucial taxa. Here, we provide cytochrome b data for 143 individuals of three species in the Mantella madagascariensis group, including four newly discovered populations. Three of these new populations are characterized by highly variable coloration and patterns but showed no conspicuous increase of haplotype diversity which would be expected under a scenario of secondary hybridization or admixture of chromatically uniform populations. Several populations of these variable forms and of M. crocea were geographically interspersed between the distribution areas of Mantella aurantiaca and Mantella milotympanum. This provides further support for the hypothesis that the largely similar uniformly orange colour of the last two species evolved in parallel. Phylogenies based on over 2000 bp of two nuclear genes (Rag-1 and Rag-2) identified reliably a clade of the Mantella betsileo and Mantella laevigata groups as sister lineage to the M. madagascariensis group, but did not support species within the latter group as monophyletic. The evolutionary history of these frogs might have been characterized by fast and recurrent evolution of colour patterns, possibly triggered by strong selection pressures and mimicry effects, being too complex to be represented by simple bifurcating models of phylogenetic reconstruction.  相似文献   
3.
We performed a rapid response investigation to evaluate the presence and distribution of amphibian pathogens in Madagascar following our identification of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranavirus in commercially exported amphibians. This targeted risk-based field surveillance program was conducted from February to April 2014 encompassing 12 regions and 47 survey sites. We simultaneously collected amphibian and environmental samples to increase survey sensitivity and performed sampling both in wilderness areas and commercial amphibian trade facilities. Bd was not detected in any of 508 amphibian skin swabs or 68 water filter samples, suggesting pathogen prevalence was below 0.8%, with 95% confidence during our visit. Ranavirus was detected in 5 of 97 amphibians, including one adult Mantidactylus cowanii and three unidentified larvae from Ranomafana National Park, and one adult Mantidactylus mocquardi from Ankaratra. Ranavirus was also detected in water samples collected from two commercial amphibian export facilities. We also provide the first report of an amphibian mass-mortality event observed in wild amphibians in Madagascar. Although neither Bd nor ranavirus appeared widespread in Madagascar during this investigation, additional health surveys are required to disentangle potential seasonal variations in pathogen abundance and detectability from actual changes in pathogen distribution and rates of spread. Accordingly, our results should be conservatively interpreted until a comparable survey effort during winter months has been performed. It is imperative that biosecurity practices be immediately adopted to limit the unintentional increased spread of disease through the movement of contaminated equipment or direct disposal of contaminated material from wildlife trade facilities. The presence of potentially introduced strains of ranaviruses suggests that Madagascar''s reptile species might also be threatened by disease. Standardized population monitoring of key amphibian and reptile species should be established with urgency to enable early detection of potential impacts of disease emergence in this global biodiversity hotspot.  相似文献   
4.
5.
6.
Mantella bernhardi is an endemic species of Malagasy poison frog threatened by loss and fragmentation of its natural habitat and collection for the pet trade. It is classified as threatened according to the International Union for Conservation of Nature and Natural Resources (IUCN) categories and included in Appendix II of the Convention on the International Trade of Endangered Species (CITES). A recent survey has increased the known distributional range of the species from one to eight populations across southeastern Madagascar, but little is known about its biology and genetic diversity. Here we estimate inter- and intrapopulation mitochondrial genetic variation of four populations. Populations from the northern and southern parts of the distributional range showed a high degree of divergence (maximum of 11.35% in cytochrome b) and were recovered as reciprocally monophyletic groups. Nine haplotypes were detected in the northern and 12 in the southern populations. The population from Ranomafana National Park showed the lowest number of haplotypes and nucleotide diversity, and shared its most common haplotype with the second northern population from Tolongoina. All the other detected haplotypes were unique to each of the four populations. This suggests the existence of important barriers to gene flow, pre-dating human colonization of Madagascar at about 2000 years ago, in distinct contrast to other Mantella species that show a high degree of haplotype sharing throughout their range. The continued habitat fragmentation within the distribution range of M. bernhardi prevents any connection between its populations. Our data indicate the existence of at least two different management units for conservation in this species, corresponding to the North and South of its distribution range, and highlight the existence of strong regional endemism in southeastern Madagascar.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号