首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
  52篇
  2017年   1篇
  2013年   9篇
  2010年   1篇
  2009年   8篇
  2008年   2篇
  2007年   9篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1992年   1篇
  1990年   1篇
  1978年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
Controlling accumulations of unwanted biofilms requires an understanding of the mechanisms that organisms use to interact with submerged substrata. While the substratum properties influencing biofilm formation are well studied, those that may lead to cellular or biofilm detachment are not. Surface-grafted stimuli-responsive polymers, such as poly (N-isopropylacrylamide) (PNIPAAm) release attached cells upon induction of environmentally-triggered phase changes. Altering the physicochemical characteristics of such polymeric systems for systematically studying release, however, can alter the phase transition. The physico-chemical changes of thin films of PNIPAAm grafted from initiator-modified self-assembled monolayers (SAMs) of ω-substituted alkanethiolates on gold can be altered by changing the composition of the underlying SAM, without affecting the overlying polymer. This work demonstrates that the ability to tune such changes in substratum physico-chemistry allows systematic study of attachment and release of bacteria over a large range of water contact angles. Such surfaces show great promise for studying a variety of interactions at the biointerface. Understanding of the source of this tunability will require further studies into the heterogeneity of such films and further investigation of interactions beyond those of water wettability.  相似文献   
2.
Climate warming is discussed as a factor that can favour the success of invasive species. In the present study, we analysed potential fitness gains of moderate warming (3 °C above field temperature) on the invasive clam Corbicula fluminea during summer and winter. The experiments were conducted under seminatural conditions in a bypass-system of a large river (Rhine, Germany). We showed that warming in late summer results in a significant decrease in the clams' growth rates (body mass and shell length increase) and an increase in mortality rate. The addition of planktonic food dampens the negative effect of warming on the growth rates. This suggests that the reason for the negative growth effect of temperature increase in late summer is a negative energetic balance caused by an enhanced metabolic rate at limited food levels. Warming during early summer revealed contrasting effects with respect of body mass (no warming effect) and shell length (increased shell growth with warming). This differential control of both parameters further enhances the loss of the relative (size-specific) body mass with warming. In contrast, warming in winter had a consistently positive effect on the clams' growth rate as demonstrated in two independent experiments. Furthermore, the reproduction success (as measured by the average number of larvae per clam) during the main breeding period (April) was strongly enhanced by experimental warming during winter, i.e. by eight times during the relatively cold winter 2005/2006 and by 2.6 times during the relatively warm winter 2007/2008. This strong, positive effect of moderate winter warming on the clams' fitness is probably one reason for the recent invasion success of C. fluminea in the northern hemisphere. However, warm summer events might counteract the positive winter warming effect, which could balance out the fitness gains.  相似文献   
3.
Adult Rhipicephalus appendiculatus Muguga, having high or low intensities of Theileria parva Muguga infection in their salivary glands, were exposed to 20 °C and 85% relative humidity in the laboratory or quasi-natural conditions. Survival of the ticks and T. parva infections in their salivary glands was then monitored over a two year period. Ticks, having an average infection level of 2 infected acini per female, survived for up to 70 or 106 weeks after moulting under the laboratory or quasi-natural conditions respectively. Those having an infection level of 26 infected acini per female, survived for a similar duration except that those under quasi-natural conditions survived for a slightly shorter duration (102 weeks). Similarly, T. parva parasites survived for much longer periods under quasi-natural conditions than under the laboratory conditions. They survived for up to 38 or 78 weeks post salivary gland infection under the laboratory or quasi-natural conditions respectively in both categories of infection levels. There was apparently a density dependent relationship in T. parva survival, with a dramatic fall in infection occurring in ticks with high levels of infection between weeks 10 and 18 or weeks 38 and 46 post salivary gland infection in those exposed to laboratory or quasi-natural conditions before levelling off. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
We have studied the temporal variation in viral abundances and community assemblage in the eutrophic Lake Loosdrecht through epifluorescence microscopy and pulsed field gel electrophoresis (PFGE). The virioplankton community was a dynamic component of the aquatic community, with abundances ranging between 5.5 x 10(7) and 1.3 x 10(8) virus-like particles ml(-1) and viral genome sizes ranging between 30 and 200 kb. Both viral abundances and community composition followed a distinct seasonal cycle, with high viral abundances observed during spring and summer. Due to the selective and parasitic nature of viral infection, it was expected that viral and host community dynamics would covary both in abundances and community composition. The temporal dynamics of the bacterial and cyanobacterial communities, as potential viral hosts, were studied in addition to a range of environmental parameters to relate these to viral community dynamics. Cyanobacterial and bacterial communities were studied applying epifluorescence microscopy, flow cytometry, and denaturing gradient gel electrophoresis (DGGE). Both bacterial and cyanobacterial communities followed a clear seasonal cycle. Contrary to expectations, viral abundances were neither correlated to abundances of the most dominant plankton groups in Lake Loosdrecht, the bacteria and the filamentous cyanobacteria, nor could we detect a correlation between the assemblage of viral and bacterial or cyanobacterial communities during the overall period. Only during short periods of strong fluctuations in microbial communities could we detect viral community assemblages to covary with cyanobacterial and bacterial communities. Methods with a higher specificity and resolution are probably needed to detect the more subtle virus-host interactions. Viral abundances did however relate to cyanobacterial community assemblage and showed a significant positive correlation to Chl-a as well as prochlorophytes, suggesting that a significant proportion of the viruses in Lake Loosdrecht may be phytoplankton and more specific cyanobacterial viruses. Temporal changes in bacterial abundances were significantly related to viral community assemblage, and vice versa, suggesting an interaction between viral and bacterial communities in Lake Loosdrecht.  相似文献   
5.
Phylogenetic relationships of 18 Thlaspi s.l. species were inferred from nuclear ribosomal internal transcribed spacer (ITS) sequence data. These species represent all sections of the basic classification system of Schulz primarily based on fruit characters. The molecular phylogeny supported six clades that are largely congruent with species groups recognized by Meyer on the basis of differences in seed coat anatomy, i.e. Thlaspi s. s., Thlaspkeras, Moccaea {Raparia included), Microthhspi, Vania and Neurotropy. Some of these lineages include species which are morphologically diverse in fruit shape (e.g. Thlaspi s. s.: T. arvense - fruits broadly winged, T. ceratocarpum - fruits with prominent horns at apex, T. alliaceum - fruits very narrowly winged). Furthermore, the same fruit shape type is distributed among different clades. For instance, fruits with prominent horns at apex are found in Thlaspi s. s. ( T. ceratocarpum) and Thlaspiceras (T oxyceras). These results clearly indicate convergence in fruit characters previously used for sectional classification in Thlaspi s. l.  相似文献   
6.
The eresid spider genus Eresus is morphologically and ecologically conservative. At least three species occur in Europe. However, deep genetic divergence among geographical samples within two species, E. cinnaberinus and E. sandaliatus , may suggest more cryptic species. In the present study we investigate the genetic cohesion of the third species, Eresus walckenaeri , throughout its eastern Mediterranean distribution range, relative to the E. cinnaberinus–E. sandaliatus species complex. Eresus walckenaeri specimens were monophyletic. Genetic discreteness of E. walckenaeri in a region of sympatry with its sister species in Greece provides evidence for species integrity of E. walckenaeri within the European Eresus species complex. Eresus walckenaeri exhibited high concordance between geographical location and mtDNA genealogy. Two major phylogeographical clades were found in the Greek–Turkish and Syrian–Israel parts of the investigated area, respectively (∼6.5% sequence divergence). Concordance between geography and genetic divergence was further observed between Aegean island samples and their corresponding Greek and Turkish mainland samples, suggesting regional subdivision with gradual but potentially high dispersal propensity. Monophyly and limited regional distribution indicate Mediterranean endemic origin.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 1–9.  相似文献   
7.
The Mediterranean orchid Anacamptis papilionacea , despite showing a typical food-deceptive floral display, has also been reported to frequently attract male pollinators, suggesting a potentiality for sexual attraction. In a survey from a southern Italian population of A. papilionacea and their hybrids with Anacamptis morio , we collected 37 pollinators belonging to five bee species carrying 126 orchid pollinia. The main pollinator of A. papilionacea was Anthophora crinipes male (48.6%), but the number of females was not negligible (22.9%). We also found pollinator sharing between the hybrid and the parental species. Our findings confirm that, contrary to other food-deceptive species, A. papilionacea mainly attracts male insects, but also that, in contrast to sexually deceptive species, this attraction is not specific. We suggest that A. papilionacea adopts a complex mix of food and sexually deceptive pollination and could represent a helpful model for studying the transition between different pollination strategies.  相似文献   
8.
Permafrost environments within the Siberian Arctic are natural sources of the climate relevant trace gas methane. In order to improve our understanding of the present and future carbon dynamics in high latitudes, we studied the methane concentration, the quantity and quality of organic matter, and the activity and biomass of the methanogenic community in permafrost deposits. For these investigations a permafrost core of Holocene age was drilled in the Lena Delta (72°22′N, 126°28′E). The organic carbon of the permafrost sediments varied between 0.6% and 4.9% and was characterized by an increasing humification index with permafrost depth. A high CH4 concentration was found in the upper 4 m of the deposits, which correlates well with the methanogenic activity and archaeal biomass (expressed as PLEL concentration). Even the incubation of core material at −3 and −6°C with and without substrates showed a significant CH4 production (range: 0.04–0.78 nmol CH4 h−1 g−1). The results indicated that the methane in Holocene permafrost deposits of the Lena Delta originated from modern methanogenesis by cold‐adapted methanogenic archaea. Microbial generated methane in permafrost sediments is so far an underestimated factor for the future climate development.  相似文献   
9.
10.
While substantial cold-season respiration has been documented in most arctic and alpine ecosystems in recent years, the significance of cold-season photosynthesis in these biomes is still believed to be small. In a mesic, subartic heath during both the cold and warm season, we measured in situ ecosystem respiration and photosynthesis with a chamber technique at ambient conditions and at artificially increased frequency of freeze–thaw (FT) cycles during fall and spring. We fitted the measured ecosystem exchange rates to respiration and photosynthesis models with R2-values ranging from 0.81 to 0.85. As expected, estimated cold-season (October, November, April and May) respiration was significant and accounted for at least 22% of the annual respiratory CO2 flux. More surprisingly, estimated photosynthesis during this period accounted for up to 19% of the annual gross CO2 uptake, suggesting that cold-season photosynthesis partly balanced the cold-season respiratory carbon losses and can be significant for the annual cycle of carbon. Still, during the full year the ecosystem was a significant net source of 120 ± 12 g C m−2 to the atmosphere. Neither respiration nor photosynthetic rates were much affected by the extra FT cycles, although the mean rate of net ecosystem loss decreased slightly, but significantly, in May. The results suggest only a small response of net carbon fluxes to increased frequency of FT cycles in this ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号