首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28337篇
  免费   2302篇
  国内免费   3114篇
  2024年   67篇
  2023年   384篇
  2022年   1037篇
  2021年   1635篇
  2020年   1139篇
  2019年   1369篇
  2018年   1226篇
  2017年   895篇
  2016年   1239篇
  2015年   1816篇
  2014年   2164篇
  2013年   2205篇
  2012年   2690篇
  2011年   2354篇
  2010年   1431篇
  2009年   1302篇
  2008年   1497篇
  2007年   1245篇
  2006年   1138篇
  2005年   1048篇
  2004年   871篇
  2003年   733篇
  2002年   616篇
  2001年   499篇
  2000年   448篇
  1999年   423篇
  1998年   286篇
  1997年   252篇
  1996年   249篇
  1995年   226篇
  1994年   213篇
  1993年   146篇
  1992年   163篇
  1991年   149篇
  1990年   115篇
  1989年   115篇
  1988年   72篇
  1987年   76篇
  1986年   52篇
  1985年   48篇
  1984年   50篇
  1983年   32篇
  1982年   22篇
  1981年   12篇
  1979年   2篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Plants of four isolines of soyabean [Glycine max(L.) Merrill]‘Clark’, viz‘L71-920’ (maturity genecomplemente1e2e3 ), ‘L80-5914’ (E1e2e3), ‘Clark’(e1E2E3), and ‘L65-3366’ (E1E2E3), were grown inshort (12.25 h d - 1natural light) and long days (12.25 h d- 1natural light supplemented with 2.75 h d - 1low-irradianceartificial light) from first flowering to maturity in a polythenetunnel maintained at 30/24°C (day/night). Whereas therewere few differences among the isolines grown in short days,in long days the dominant alleles increased crop duration, biomassand seed yield substantially. Increases in biological and economicyield were not solely a consequence of longer crop duration:the dominant alleles also increased crop growth rate and radiationuse efficiency in long days (from 1.3 g MJ - 1total radiationine1e2e3 to 2.8 g MJ - 1inE1E2E3 ). Greater radiation use efficiencyresulted from a relatively longer leaf area duration, betterdistribution and orientation of a larger mass of leaves withinthe canopy, and smaller partitioning of assimilates to reproductivestructures. The work reveals the substantial effects of thethree lociE1 / e1, E2/ e2and E3/e3 on the response of plantgrowth, as well as development, to environment. Their relevanceto crop adaptation is discussed. Copyright 2000 Annals of BotanyCompany Glycine max(L.) Merrill, soyabean, maturity genes, flowering, phenology, growth, yield  相似文献   
3.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
4.
5.
6.
<正>Aristolochic acids, mutational signature, and hepatocellular carcinoma Aristolochic acids (AA) are the etiologic agents of aristolochic acid nephropathy (AAN) and contribute to the global prevalence of chronic kidney disease and urothelial cancer (Grollman et al., 2007). DNA adducts formed by AA generate a unique AT transversions mutation spectrum at  相似文献   
7.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
8.
Molecular dynamics (MD) simulations of phosphatidylinositol (4,5)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) bilayers indicate that the inositol rings are tilted ∼40° with respect to the bilayer surface, as compared with 17° for the P-N vector of POPC. Multiple minima were obtained for the ring twist (analogous to roll for an airplane). The phosphates at position 1 of PIP2 and PIP3 are within an Ångström of the plane formed by the phosphates of POPC; lipids in the surrounding shell are depressed by 0.5-0.8 Å, but otherwise the phosphoinositides do not substantially perturb the bilayer. Finite size artifacts for ion distributions are apparent for systems of ∼26 waters/lipid, but, based on simulations with a fourfold increase of the aqueous phase, the phosphoinositide positions and orientations do not show significant size effects. Electrostatic potentials evaluated from Poisson-Boltzmann (PB) calculations show a strong dependence of potential height and ring orientation, with the maxima on the −25 mV surfaces (17.1 ± 0.1 Å for PIP2 and 19.4 ± 0.3 Å for PIP3) occurring near the most populated orientations from MD. These surfaces are well above the background height of 10 Å estimated for negatively charged cell membranes, as would be expected for lipids involved in cellular signaling. PB calculations on microscopically flat bilayers yield similar maxima as the MD-based (microscopically rough) systems, but show less fine structure and do not clearly indicate the most probable regions. Electrostatic free energies of interaction with pentalysine are also similar for the rough and flat systems. These results support the utility of a rigid/flat bilayer model for PB-based studies of PIP2 and PIP3 as long as the orientations are judiciously chosen.  相似文献   
9.
10.
贝壳历来是生物工程和材料学研究的重要对象。贝壳中的贝壳基质蛋白质在贝壳的形成与发育过程中具有重要的调控作用。Whirlin类蛋白质(Whirlin-like protein,WLP)是一种从厚壳贻贝(Mytilus coruscus)中鉴定的新型贝壳基质蛋白质。序列分析结果显示,该蛋白质含有PDZ(postsynaptic density/Discs large/Zonula occludens)结构域,而该结构域对贝壳生物矿化的影响目前尚无报道。为深入了解WLP在贝壳形成中对碳酸钙晶体的影响,在序列分析基础上,采用密码子优化结合原核重组表达,获得其重组表达产物后,开展了重组WLP对碳酸钙晶体形貌及晶型的影响研究,结晶速度抑制以及碳酸钙晶体结合分析。分析结果表明,重组WLP能诱导文石型碳酸钙晶体的形貌和方解石型碳酸钙晶体的晶型发生改变;同时重组WLP对碳酸钙晶体具有结合作用,且能抑制碳酸钙晶体的结晶速度。上述结果表明,WLP对贝壳的形成及发育具有重要影响,并可能在贝壳肌棱柱层的形成中发挥了重要作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号