首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Rice HMGB1 protein recognizes DNA structures and bends DNA efficiently   总被引:4,自引:0,他引:4  
We analyzed the DNA-binding and DNA-bending properties of recombinant HMGB1 proteins based on a rice HMGB1 cDNA. Electrophoretic mobility shift assay demonstrated that rice HMGB1 can bind synthetic four-way junction (4H) DNA and DNA minicircles efficiently but the binding to 4H can be completed out by HMGA and histone H1. Conformational changes were detected by circular dichroism analysis with 4H DNA bound to various concentrations of HMGB1 or its truncated forms. T4 ligase-mediated circularization assays with short DNA fragments of 123 bp showed that the protein is capable of increasing DNA flexibility. The 123-bp DNA formed closed circular monomers efficiently in its presence, similar to that in an earlier study on maize HMG. Additionally, our results show for the first time that the basic N-terminal domain enhances the affinity of the plant HMGB1 protein for 4H DNA, while the acidic C-terminal domain has the converse effects.  相似文献   
2.
Zhang W  Wu Q  Pwee KH  Jois SD  Kini RM 《Biochemistry》2003,42(21):6596-6607
Wheat HMGa protein is a typical member of the plant HMGA family. It has four AT hooks and a histone H1-like region. A panel of deletion mutants of HMGa was generated to study the role of different regions of HMGa in its binding to 4H (a synthetic DNA that mimics the in vivo structure of intermediates of homologous recombination and DNA repair) and linear DNAs. Although the histone H1-like region of HMGa does not bind to 4H or linear DNAs, it does enhance the binding. Mutants with any two adjacent AT hooks show specific binding to both 4H and linear P268 (and P31) with different binding affinities, which is partly due to the flanking regions between AT hooks. Conformational studies indicate that the alpha-helical content of HMGa increases significantly when it binds to 4H compared to that after binding to P31, linear DNA. In contrast, linear DNA, but not 4H, undergoes substantial conformational change when it binds to HMGa, indicating that linear DNA is relatively more flexible than 4H. A more significant difference in the affinities of binding of the mutants of HMGa to 4H was observed compared to their affinities of binding to linear DNA, P31. These differences could be due to the rigidity of the DNA and the characters of the AT hook regions in the mutants.  相似文献   
3.
Digit formation during vertebrate limb development is a well-known example of programmed cell death. We have used this system to analyze whether the formation of the interdigital necrotic zone in mouse autopods is linked with the expression of BAG-1, a gene with an anti-death activity. Here, we demonstrate that during development of mouse autopods, BAG-1 expression is downregulated upon the initiation of interdigital apoptosis. We further show that retinoic acid induced interdigital apoptosis is also correlated with a downregulation of BAG-1 expression. On the contrary, the expression of BAG-1 remains unaltered in autopods of RARbeta(-/-)/RARgamma(-/-) mice which show severe interdigital webbing due to a marked decrease in interdigital apoptosis.  相似文献   
4.
5.
Plant high-mobility-group (HMG) chromosomal proteins are the most abundant and ubiquitous nonhistone proteins found in the nuclei of higher eukaryotes. There are only two families of HMG proteins, namely, HMGA and HMGB in plants. The cDNA encoding wheat HMGa protein was isolated and characterized. Wheat HMGA cDNA encodes a protein of 189 amino acid residues. At its N terminus, there is a histone H1-like structure, which is a common feature of plant HMGA proteins, followed by four AT-hook motifs. Polymerase chain reaction results show that the gene contains a single intron of 134 bp. All four AT-hook motifs are encoded by the second exon. Northern blot results show that the expression of HMGA gene is much higher in organs undergoing active cell proliferation. Gel retardation analysis show that wheat HMGa, b, c and histone H1 bind to four-way-junction DNA with high binding affinity, but affinity is dramatically reduced with increasing Mg(2+) and Na(+) ion concentration. Competition binding studies show that proteins share overlapping binding sites on four-way-junction DNA. HMGd does not bind to four-way-junction DNA.  相似文献   
6.
A 268 bp region (P268) of the pea plastocyanin gene promoter responsible for high-level expression has been shown to interact with the high mobility group proteins HMG-1 and HMG-I/Y isolated from pea shoot chromatin. cDNAs encoding an HMG-1 protein of 154 amino acid residues containing a single HMG-box and a C-terminal acidic tail and an HMG-I/Y-like protein of 197 amino acid residues containing four AT-hooks have been isolated and expressed in Escherichia coli to provide large amounts of full-length proteins. DNase I footprinting identified eight binding sites for HMG-I/Y and six binding sites for HMG-1 in P268. Inhibition of binding by the antibiotic distamycin, which binds in the minor groove of A/T-rich DNA, revealed that HMG-I/Y binding was 400-fold more sensitive than HMG-1 binding. Binding-site selection from a pool of random oligonucleotides indicated that HMG-I/Y binds to oligonucleotides containing stretches of five or more A/T bp and HMG-1 binds preferentially to oligonucleotides enriched in dinucleotides such as TpT and TpG.  相似文献   
7.
The high-mobility-group (HMG) chromosomal protein wheat HMGa was purified to homogeneity and tested for its binding characteristics to double-stranded DNA. Wheat HMGa was able to bind to P268, an A/T-rich fragment derived from the pea plastocyanin gene promoter, producing a small mobility shift in gel retardation assays where the bound complex was sensitive to addition of proteinase K but resistant to heat treatment of the protein, consistent with the identity of wheat HMGa as a putative HMG-I/Y protein. Gel retardation assays and southwestern hybridization analysis revealed that wheat HMGa could selectively interact with the DNA polynucleotides poly(dA).poly(dT), poly(dAdT).poly(dAdT), and poly(dG).poly(dC), but not with poly(dGdC).poly(dGdC). Surface plasmon resonance analysis determined the kinetic and affinity constants of sensor chip-immobilized wheat HMGa for double-stranded DNA 10-mers, revealing a good affinity of the protein for various dinucleotide combinations, except that of alternating GC sequence. Thus contrary to prior reports of a selectivity of wheat HMGa for A/T-rich DNA, the protein appears to be able to interact with sequences containing guanine and cytosine residues as well, except where G/C residues alternate directly in the primary sequence.  相似文献   
8.
9.
Gel retardation assays using pea nuclear extracts have detected specific binding to regions of the promoter of the pea plastocyanin gene (petE). Several complexes which differ in sensitivity to competition with unlabelled promoter fragments and various DNA alternating copolymers, to heat treatment and to digestion with proteinase K have been detected. A protein factor, PCF1, forming one of these complexes was heat-stable and most sensitive to competition with poly(dAdT).poly(dAdT) compared to other alternating copolymers. DNase I footprinting assays showed that tracts of A/T-rich sequence within the -444 to -177 positive regulatory region of the petE promoter were protected in the presence of the pea nuclear extract. The factor PCF1 copurified with a high-mobility-group (HMG) protein preparation from pea chromatin. DNase I footprinting with the HMG protein preparation demonstrated that similar tracts of A/T-rich sequences within the promoter were protected. Southwestern-blot analysis of pea HMG proteins purified by gel filtration through Superose 12 detected a single DNA-binding species of 21 kDa. The properties of the factor PCF1 suggest that it is likely to be an HMG I protein.  相似文献   
10.
A series of 5′ deletions of the pea plastocyanin gene (petE) promoter fused to the β-glucuronidase (GUS) reporter gene has been examined for expression in transgenic tobacco plants. Strong positive and negative cis-elements which modulate quantitative expression of the transgene in the light and the dark have been detected within the petE promoter. Disruption of a negative regulatory element at ?784 bp produced the strongest photosynthesis-gene promoter so far described. Histochemical analysis demonstrated that all petE-GUS constructs directed expression in chloroplast-containing cells, and that a region from ?176 bp to +4 bp from the translation start site was sufficient for such cell-specific expression. The petE-promoter fusions were expressed at high levels in etiolated transgenic tobacco seedlings but there was no marked induction of GUS activity in the light. The endogenous tobacco plastocyanin genes and the complete pea plastocyanin gene in transgenic tobacco plants were also expressed in the dark, but showed a three- to sevenfold increase in the light. This indicates a requirement for sequences 3′ to the promoter for the full light response of the petE gene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号