首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
  2022年   1篇
  2021年   3篇
  2015年   3篇
  2011年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1992年   1篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
排序方式: 共有33条查询结果,搜索用时 250 毫秒
1.
Summary DNA markers in the pericentromeric region of human chromosome 21 have shown linkage to a gene for Familial Alzheimer disease (FAD; St. George Hyslop et al. 1987). The limited informativeness of probes for the loci D21S13 and D21S16 have hindered precise mapping of the FAD locus and analysis of non-allelic heterogeneity in FAD (Schellenberg et al. 1988; St. George-Hyslop et al. 1987). We recently described a new EcoRII polymorphism at the D21S13 locus that was very informative in a large FAD pedigree (Pulst et al. 1990a, b). We now report another polymorphism for the D21S13 locus that further increases the informativeness of this locus.  相似文献   
2.
Summary We have investigated genetic linkage of von Recklinghausen neurofibromatosis (NF1) and achondroplasia (ACH) using chromosome-17 markers that are known to be linked to NF1. Physical proximity of the two loci was suggested by the report of a patient with mental retardation and the de novo occurrence of both NF1 and ACH. Since the chance of de novo occurrence of these two disorders in one individual is 1 in 600 million, this suggested a chromosomal deletion as a single unifying molecular event and also that the ACH and NF1 loci might be physically close. To test this, we performed linkage analysis on a three-generation family with ACH. We used seven DNA probes that are tightly linked to the NF1 locus, including DNA sequences that are known to flank the NF1 locus on the centromeric and telomeric side. We detected two recombinants between the ACH trait and markers flanking the NF1 locus. In one recombinant, the flanking markers themselves were nonrecombinant. Multi-point linkage analysis excluded the ACH locus from a region surrounding the NF1 locus that spans more than 15cM (lod score < -2). Therefore, analysis of this ACH pedigree suggests that the ACH locus is not linked to the NF1 locus on chromosome 17.  相似文献   
3.
4.
Spinocerebellar ataxia type 2 (SCA2) is a member of a group of neurodegenerative diseases that are caused by instability of a DNA CAG repeat. We report the genomic structure of theSCA2gene. Its 25 exons, encompassing approximately 130 kb of genomic DNA, were mapped onto the physical map of the region. Exonic sizes varied from 37 to 890 bp, and intronic sizes ranged from 323 bp to more than 15 kb. The CAG repeat was contained in the 5′ coding region of the gene in exon 1. Determination of the splice junction sequences indicated the presence of only one deviation from the GT-AG rule at the donor splice site of intron 9, which contained a GC instead of a GT dinucleotide. Exon 10, immediately downstream from this rare splice donor site, was alternatively spliced. Alternative splicing does not affect the reading frame and is predicted to encode an isoform containing 70 amino acids less.  相似文献   
5.
Mouse models with physiological and behavioral differences attributable to differential plasticity of hippocampal and amygdalar neuronal networks are rare. We previously generated ataxin-2 (Atxn2) knockout mice and demonstrated that these animals lacked obvious anatomical abnormalities of the CNS, but showed marked obesity and reduced fertility. We now report on behavioral changes as a consequence of Atxn2-deficiency. Atxn2-deficiency was associated with impaired long-term potentiation (LTP) in the amygdala, but normal LTP in the hippocampus. Intact hippocampal plasticity was associated behaviorally with normal Morris Water maze testing. Impaired amygdala plasticity was associated with reduced cued and contextual fear conditioning. Conditioned taste aversion, however, was normal. In addition, knockout mice showed decreased innate fear in several tests and motor hyperactivity in open cage testing. Our results suggest that Atxn2-deficiency results in a specific set of behavioral and cellular disturbances that include motor hyperactivity and abnormal fear-related behaviors, but intact hippocampal function. This animal model may be useful for the study of anxiety disorders and should encourage studies of anxiety in patients with spinocerebellar ataxia type 2 (SCA2).  相似文献   
6.
7.
The spinocerebellar ataxia type 2 (SCA2) gene has been localized to chromosome 12q24.1. To characterize this region and to aid in the identification of the SCA2 gene, we have constructed a 3.9-Mb physical map, which covers markers D12S1328 and D12S1329 known to flank the gene. The map comprises a contig of 84 overlapping yeast artificial chromosomes (YACs), P1 artificial chromosomes (PACs), and bacterial artificial chromosomes (BACs) onto which we placed 82 PCR markers. We localized eight genes and expressed sequence tags on this map, many of which had not been precisely mapped before. In contrast to YACs, which showed a high degree of chimerism and deletions in this region, PACs and BACs were stable. Only 1 in 65 PACs contained a small deletion, and 2 in 18 BACs were chimeric. The high-resolution physical map, which was used in the identification of the SCA2 gene, will be useful for the positional cloning of other disease genes mapped to this region.  相似文献   
8.
9.
The autosomal dominant cerebellar ataxias (ADCAs) are a clinically and genetically heterogeneous group of disorders. The clinical symptoms include cerebellar dysfunction and associated signs from dysfunction in other parts of the nervous system. So far, five spinocerebellar ataxia (SCA) genes have been identified: SCA1, SCA2, SCA3, SCA6, and SCA7. Loci for SCA4 and SCA5 have been mapped. However, approximately one-third of SCAs have remained unassigned. We have identified a Mexican American pedigree that segregates a new form of ataxia clinically characterized by gait and limb ataxia, dysarthria, and nystagmus. Two individuals have seizures. After excluding all known genetic loci for linkage, we performed a genomewide search and identified linkage to a 15-cM region on chromosome 22q13. A maximum LOD score of 4.3 (recombination fraction 0) was obtained for D22S928 and D22S1161. This distinct form of ataxia has been designated "SCA10." Anticipation was observed in the available parent-child pairs, suggesting that trinucleotide-repeat expansion may be the mutagenic mechanism.  相似文献   
10.
Large-scale gene expression measurements with oligonucleotide microarrays have contributed tremendously to biological research. However, to distinguish between relevant expression changes and falsely identified positives, the source and magnitude of errors must be understood. Here, we report a source of biological variability in microarray experiments with stably transfected cell lines. Mouse embryonic fibroblast (MEF/3T3) and rat schwannoma (RT4) cell lines were generated to provide regulatable schwannomin expression. The expression levels of 29 samples from five different mouse embryonic fibroblast clonal cell lines and 18 samples from 3 RT4 cell lines were monitored with oligonucleotide microarrays. Using hierarchical clustering, we determined that the changes in gene expression induced by schwannomin overexpression were subtle when compared with those detected as a consequence of clonal selection during generation of the cell lines. The hierarchical clustering implies that significant alterations of gene expression were introduced during the transfection and selection processes. A total of 28 genes were identified by Kruskal-Wallis rank test that showed significant variation between clonal lines. Most of them were related to cytoskeletal function and signaling pathways. Based on these analyses, we recommend that replications of experiments with several selected cell lines are necessary to assess biological effects of induced gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号