首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   9篇
  308篇
  2023年   2篇
  2022年   6篇
  2021年   10篇
  2020年   6篇
  2019年   6篇
  2018年   11篇
  2017年   15篇
  2016年   12篇
  2015年   20篇
  2014年   21篇
  2013年   21篇
  2012年   21篇
  2011年   31篇
  2010年   14篇
  2009年   15篇
  2008年   8篇
  2007年   18篇
  2006年   12篇
  2005年   11篇
  2004年   11篇
  2003年   5篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1981年   1篇
  1978年   1篇
  1969年   1篇
排序方式: 共有308条查询结果,搜索用时 0 毫秒
1.
Recently attempts have been made to establish the presence and to determine the metabolic versatility of microorganisms in the terrestrial deep subsurface at the Savannah River Plant, Aiken, SC, USA. Sediment samples obtained at 20 different depths of up to 526 m were examined to determine carbon mineralization under aerobic, sulfate-reducing, and methanogenic conditions. The evolution of14CO2 from radiolabelled glucose was observed under aerobic conditions in all sediments, whereas pyridine was transformed in 50% of the 20 sediments and indole was metabolized in 85% of the sediments. Glucose mineralization in certain sediments was comparable to that in the surface environment. Sulfate was reduced in only five sediments, and two were carbon limited. Methane production was detected in ten sediments amended with formate only after long-term incubations. The transformation of indole and pyridine was only rarely observed under sulfate-reducing conditions and was never detected in methanogenic incubations. This study provides information concerning the metabolic capability of both aerobic and anaerobic microorganisms in the deep subsurface and may prove useful in determining the feasibility of microbial decontamination of such environments.  相似文献   
2.
Porins were prepared from smooth strain of Salmonella typhi 0–901 and chemotype of rough mutant of S. typhimurium Ra-30. Mice were immunized with both the porin preparations in different groups and challenged with S. typhimurium LT2–71 and S. enteritidis SH-1269. Porin immunized mice showed significant protection (P <0.01) against challenge with homologous as well as heterologous strains. Hence, the use of porins may be attempted in future to protect against salmonellosis.  相似文献   
3.
4.
5.
The co-ordinated regulation of oncogenes along with miRNAs play crucial role in carcinogenesis. In retinoblastoma (RB), several miRNAs are known to be differentially expressed. Epithelial cell adhesion molecule (EpCAM) gene is involved in many epithelial cancers including, retinoblastoma (RB) tumorigenesis. EpCAM silencing effectively reduces the oncogenic miR-17-92 cluster. In order to investigate whether EpCAM has wider effect as an inducer or silencer of miRNAs, we performed a global microRNA expression profile in EpCAM siRNA knockdown Y79 cells. MicroRNA profiling in EpCAM silenced Y79 cells showed seventy-three significantly up regulated and thirty-six down regulated miRNAs. A subset of these miRNAs was also validated in tumors. Functional studies on Y79 and WERI-Rb-1 cells transfected with antagomirs against two miRNAs of miR-181c and miR-130b showed striking changes in tumor cell properties in RB cells. Treatment with anti-miR-181c and miR-130b showed significant decrease in cell viability and cell invasion. Increase in caspase-3 level was noticed in antagomir transfected cell lines indicating the induction of apoptosis. Possible genes altered by EpCAM influenced microRNAs were predicted by bioinformatic tools. Many of these belong to pathways implicated in cancer. The study shows significant influence of EpCAM on global microRNA expression. EpCAM regulated miR-181c and miR-130b may play significant roles in RB progression. EpCAM based targeted therapies may reduce carcinogenesis through several miRNAs and target genes.  相似文献   
6.
Bayesian-based selection of metabolic objective functions   总被引:1,自引:0,他引:1  
MOTIVATION: A critical component of in silico analysis of underdetermined metabolic systems is the identification of the appropriate objective function. A common assumption is that the objective of the cell is to maximize growth. This objective function has been shown to be consistent in a few limited experimental cases, but may not be universally appropriate. Here a method is presented to quantitatively determine the most probable objective function. RESULTS: The genome-scale metabolism of Escherichia coli growing on succinate was used as a case-study for analysis. Five different objective functions, including maximization of growth rate, were chosen based on biological plausibility. A combination of flux balance analysis and linear programming was used to simulate cellular metabolism, which was then compared to independent experimental data using a Bayesian objective function discrimination technique. After comparing rates of oxygen uptake and acetate production, minimization of the production rate of redox potential was determined to be the most probable objective function. Given the appropriate reaction network and experimental data, the discrimination technique can be applied to any bacterium to test a variety of different possible objective functions. SUPPLEMENTARY INFORMATION: Additional files, code and a program for carrying out model discrimination are available at http://www.engr.uconn.edu/~srivasta/modisc.html.  相似文献   
7.
Singh RP  Brooks BR  Klauda JB 《Proteins》2009,75(2):468-477
Sterols have been shown experimentally to bind to the Osh4 protein (a homolog of the oxysterol binding proteins) of Saccharomyces cerevisiae within a binding tunnel, which consists of antiparallel beta-sheets that resemble a beta-barrel and three alpha-helices of the N-terminus. This and other Osh proteins are essential for intracellular transport of sterols and ultimately cell life. Molecular dynamics (MD) simulations are used to study the binding of cholesterol to Osh4 at the atomic level. The structure of the protein is stable during the course of all MD simulations and has little deviation from the experimental crystal structure. The conformational stability of cholesterol within the binding tunnel is aided in part by direct or water-mediated interactions between the 3-hydroxyl (3-OH) group of cholesterol and Trp(46), Gln(96), Tyr(97), Asn(165), and/or Gln(181) as well as dispersive interactions with Phe(42), Leu(24), Leu(39), Ile(167), and Ile(203). These residues along with other nonpolar residues in the binding tunnel and lid contribute nearly 75% to the total binding energy. The strongest and most populated interaction is between Gln(96) and 3-OH with a cholesterol/Gln(96) interaction energy of -4.5 +/- 1.0 kcal/mol. Phe(42) has a similar level of attraction to cholesterol with -4.1 +/- 0.3 kcal/mol. A MD simulation without the N-terminus lid that covers the binding tunnel resulted in similar binding conformations and binding energies when compared with simulations with the full-length protein. Steered MD was used to determine details of the mechanism used by Osh4 to release cholesterol to the cytoplasm. Phe(42), Gln(96), Asn(165), Gln(181), Pro(211), and Ile(206) are found to direct the cholesterol as it exits the binding tunnel as well as Lys(109). The mechanism of sterol release is conceptualized as a molecular ladder with the rungs being amino acids or water-mediated amino acids that interact with 3-OH.  相似文献   
8.
Aging biology is intimately associated with dysregulated metabolism, which is one of the hallmarks of aging. Aging‐related pathways such as mTOR and AMPK, which are major targets of anti‐aging interventions including rapamcyin, metformin, and exercise, either directly regulate or intersect with metabolic pathways. In this review, numerous candidate bio‐markers of aging that have emerged using metabolomics are outlined. Metabolomics studies also reveal that not all metabolites are created equally. A set of core “hub” metabolites are emerging as central mediators of aging. The hub metabolites reviewed here are nicotinamide adenine dinucleotide, reduced nicotinamide dinucleotide phosphate, α‐ketoglutarate, and β‐hydroxybutyrate. These “hub” metabolites have signaling and epigenetic roles along with their canonical roles as co‐factors or intermediates of carbon metabolism. Together these hub metabolites suggest a central role of the TCA cycle in signaling and metabolic dysregulation associated with aging.  相似文献   
9.
10.
The present study describes the in vivo modulatory potential of Lactobacillus rhamnosus GG (LGG), an effective probiotic, in Giardia intestinalis-infected BALB/c mice. Experimentally, it was observed that oral administration of lactobacilli prior or simultaneous with Giardia trophozoites to mice, efficiently (p < 0.05) reduced both the severity and duration of giardiasis. More specifically, probiotics fed, Giardia-infected mice, showed a significant increase in the levels of antioxidants [reduced glutathione (GSH) and superoxide dismutase (SOD)] and intestinal disaccharidases [sucrase and lactase] and decreased levels of oxidants in the small intestine, in comparison with Giardia-infected mice. Histopathological findings also revealed almost normal cellular morphology of the small intestine in probiotic-fed Giardia-infected mice compared with fused enterocytes, villous atrophy and increased infiltration of lymphocytes in Giardia-infected mice. The results of the present study has shed new light on the anti-oxidative properties of LGG in Giardia mediated tissue injury, thereby suggesting that the effects of probiotic LGG are biologically plausible and could be used as an alternative microbial interference therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号