首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   874篇
  免费   122篇
  2021年   5篇
  2019年   5篇
  2018年   8篇
  2017年   8篇
  2016年   25篇
  2015年   36篇
  2014年   35篇
  2013年   34篇
  2012年   48篇
  2011年   61篇
  2010年   47篇
  2009年   30篇
  2008年   40篇
  2007年   46篇
  2006年   49篇
  2005年   38篇
  2004年   41篇
  2003年   30篇
  2002年   38篇
  2001年   25篇
  2000年   18篇
  1999年   16篇
  1998年   17篇
  1997年   8篇
  1996年   11篇
  1995年   19篇
  1994年   11篇
  1993年   16篇
  1992年   18篇
  1991年   21篇
  1990年   8篇
  1989年   4篇
  1988年   13篇
  1987年   12篇
  1986年   13篇
  1985年   7篇
  1984年   7篇
  1983年   12篇
  1982年   9篇
  1981年   9篇
  1980年   6篇
  1979年   9篇
  1978年   8篇
  1976年   8篇
  1971年   10篇
  1969年   7篇
  1968年   4篇
  1967年   7篇
  1966年   5篇
  1965年   3篇
排序方式: 共有996条查询结果,搜索用时 118 毫秒
1.
The l-thyroxine binding site in human serum thyroxine-binding globulin was investigated by affinity labeling with N-bromoacetyl-l-thyroxine (BrAcT4). Competitive binding studies showed that, in the presence of 100 molar excess of BrAcT4, binding of thyroxine to thyroxine-binding globulin was nearly totally abolished. The reaction of BrAcT4 to form covalent binding was inhibited in the presence of thyroxine and the affinity-labeled thyroxinebinding globulin lost its ability to bind thyroxine. These results indicate BrAcT4 and thyroxine competed for the same binding site. Affinity labeling with 2 mol of BrAcT4/mol of thyroxine-binding globulin resulted in the covalent attachment of 0.7 mol of ligand. By amino acid analysis and high voltage paper electrophoresis, methionine was identified as the major residue labeled (75%). Lysine, tyrosine, and histidine were also found to be labeled to the extent of 8, 8, and 5%, respectively.  相似文献   
2.
3.
4.
5.
Male gypsy moths (Lymantria dispar L.) are able to control their forward flight speed solely by means of optical cues derived from the lateral parts of their visual field. Thereby, relative motion of the objects is required, which under free flight conditions would derive from the self-induced motion of the stationary objects within a surrounding structured in depth. Besides this motion parallax, however, the control system for forward flight speed demands figural properties of the objects such as differences in their angular extension or contrast. In a natural surround, the images of objects closer to the moth have higher angular velocity and, in addition, are usually larger and have higher contrast than those of objects farther away. The experiments have shown that this natural pairing of angular velocity and figural properties is essential to induce a thrust response which appears suitable to counteract involuntary changes in forward flight speed, as e.g. caused by changes in wind speed under free flight conditions. Inverse pairing of the visual stimuli caused the moths to either enlarge the error signal according to positive feedback within the control circuit, or to increase thrust to a maximum as always found in experiments without motion parallax or in the absence of differences in figural properties. The open-loop experiments furthermore established that the set point of angular velocity of the closer objects lies within the range of 4.5–9°/s, and that pattern speed modulation has to cover this range in order to induce a compensatory thrust modulation. The response is largely independent of the magnitude of relative motion as long as it is present; the response amplitude, however, strongly depends on the amplitude of pattern speed modulation.The results are discussed with regard to other visual cues used for the control of forward flight speed in insects, the algorithm underlying the figure-ground discrimination in flies, and the perception of depth in man as known from psychophysical experiments.  相似文献   
6.
The nucleotide sequences of the Escherichia coli genome between the glycogen biosynthetic genes glgB and glgC, and 1170 bp of DNA which follows glgA have been determined. The region between glgB and glgC contains an open reading frame (ORF) of 1521 bp which we call glgX. This ORF is capable of coding for an Mr 56 684 protein. The deduced amino acid (aa) sequence for the putative product shows significant similarity to the E. coli glycogen branching enzyme, and to several different glucan hydrolases and transferases. The regions of sequence similarity include residues which have been reported to be involved in substrate binding and catalysis by taka-amylase. This suggests that the proposed product may catalyze hydrolysis or glycosyltransferase reactions. The cloned region which follows glgA contains an incomplete ORF (1149 bp), glgY, which appears to encode 383 aa of the N terminus of glycogen phosphorylase, based upon sequence similarity with the enzyme from rabbit muscle (47% identical aa residues) and with maltodextrin phosphorylase from E. coli (37% identical aa residues). Results suggest that neither ORF is required for glycogen biosynthesis. The localization of glycogen biosynthetic and degradative genes together in a cluster may facilitate the regulation of these systems in vivo.  相似文献   
7.
A starch deficient mutant of Arabidopsis thaliana (L.) Heynh. has been isolated in which leaf extracts contain only about 5% as much activity of ADPglucose pyrophosphorylase (EC 2.7.7.27) as the wild type. A single, nuclear mutation at a previously undescribed locus designated adg2 is responsible for the mutant phenotype. Although the mutant contained only 5% as much ADPglucose pyrophosphorylase activity as the wild type, it accumulated 40% as much starch when grown in a 12 hour photoperiod. The mutant also contained about 40% as much starch as the wild type when grown in continuous light, suggesting that the rate of synthesis regulates its steady state accumulation. Immunological analysis of leaf extracts using antibodies against the spinach 54 and 51 kilodalton (kD) ADPglucose pyrophosphorylase subunits indicated that the mutant is deficient in a cross-reactive 54 kD polypeptide and has only about 4% as much as the wild type of a cross-reactive 51 kD polypeptide. This result and genetic studies suggested that adg2 is a structural gene which codes for the 54 kD polypeptide, and provides the first functional evidence that the 54 kD polypeptide is a required component of the native ADPglucose pyrophosphorylase enzyme.  相似文献   
8.
ADP glucose pyrophosphorylase from Escherichia coli has been crystallized from polyethylene glycol 8000 solutions. The crystals are: orthorhombic, a = 155(2), b = 153(2), c = 174(2) A, space group P2(1)2(1)2(1), four tetrameric molecules/unit cell. This gives a solvent fraction of about 75% consistent with the relatively poor diffraction quality of crystals (5.0-A resolution) and their sensitivity to x-ray exposure damage. Ways of circumventing the former and improving the latter are proposed.  相似文献   
9.
ADPglucose pyrophosphorylase (EC 2.7.7.27) has been purified from two cyanobacteria: the filamentous, heterocystic, Anabaena PCC 7120 and the unicellular Synechocystis PCC 6803. The purification procedure gave highly purified enzymes from both cynobacteria with specific activities of 134 (Synechocystis) and 111 (Anabaena) units per milligram protein. The purified enzymes migrated as a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with molecular mass corresponding to 53 (Synechocystis) and 50 (Anabaena) kilodaltons. Tetrameric structures were determined for the native enzymes by analysis of gel filtrations. Kinetic and regulatory properties were characterized for the cyanobacterial ADPglucose pyrophosphorylases. Inorganic phosphate and 3-phosphoglycerate were the most potent inhibitor and activator, respectively. The Synechocystis enzyme was activated 126-fold by 3-phosphoglycerate, with saturation curves exhibiting sigmoidicity (A0.5 = 0.81 millimolar; nH = 2.0). Activation by 3-phosphoglycerate of the enzyme from Anabaena demonstrated hyperbolic kinetics (A0.5 = 0.12 millimolar; nH = 1.0), having a maximal stimulation of 17-fold. I0.5 values of 95 and 44 micromolar were calculated for the inhibition by inorganic phosphate of the Synechocystis and Anabaena enzyme, respectively. Pyridoxal-phosphate behaved as an activator of the cyanobacterial enzyme. It activated the enzyme from Synechocystis nearly 10-fold with high apparent affinity (A0.5 = 10 micromolar; nH = 1.8). Phenylglyoxal modified the cyanobacterial enzyme by inactivating the activity in the presence of 3-phosphoglycerate. Antibody neutralization experiments showed that anti-spinach leaf (but not anti-Escherichia coli) ADPglucose pyrophosphorylase serum inactivated the enzyme from cyanobacteria. When the cyanobacterial enzymes were resolved on sodium dodecyl sulfate- and two-dimensional polyacrylamide gel electrophoresis and probed with Western blots, only one protein band was recognized by the anti-spinach leaf serum. The same polypeptide strongly reacted with antiserum prepared against the smaller spinach leaf 51 kilodalton subunit, whereas the anti-54 kilodalton antibody raised against the spinach subunit reacted weakly to the cyanobacterial subunit. Regulatory and immunological properties of the cyanobacterial enzyme are more related to the higher plant than the bacterial enzyme. Despite this, results suggest that the ADPglucose pyrophosphorylase from cyanobacteria is homotetrameric in structure, in contrast to the reported heterotetrameric structures of the higher plant ADPglucose pyrophosphorylase.  相似文献   
10.
In meso-eutrophic Lake Constance (Germany-Austria-Switzerland),phytoplankton bioraass, pigments and water transparency, aswell as primary productivity, have been followed between 1980and 1989. During this period, municipal phosphorus loading declinedsignificantly. Since 1981, soluble reactive phosphorus (SRP)concentrations during deep lake mixing have decreased from 3.0to currently 1 6 mmol m3 at a rate of 7% year1.Nitrate concentrations, by contrast, continued to rise. Duringthe period of maximum phosphorus loading, flushing through theoutlet and sedimentation were about equally important sinksof phosphorus from the euphotic zone. Recently, however, sedimentationand subsequent burial of P in the bottom deposits contributedabout three-quarters to the overall P-losses from the systemMain reasons for this shift are unchanged settling fluxes ofphosphorus out of the euphotic zone and decreasing concentrationsof total phosphorus in the water. Only during spring, do concentrations of soluble reactive phosphoruswithin the euphotic zone decrease in proportion to the formationof particulate organic matter. Later during the season, euphoticSRP concentrations continue to be low but are no longer matchedby high plankton biomass because phosphorus is efficiently removedby settling of particles In spite of the observed dramatic decreasein phosphorus loading since 1980, chlorophyll concentrationsand water transparency, as well as annual phytoplankton productivity(300 g C m2), have not shown a consistent downward trend.However, the intensity of phosphorus regeneration within theeuphoric zone, which can be used as a measure of the degreeof nutrient limitation, is likely to have increased significantlyThe most probable explanation for the insensitivity of importanttrophic state indicators to reduced nutrient loading is that,in Lake Constance, biomass accumulation to a greater extentis controlled by losses, mainly grazing by zooplankton and sedimentation,than by primary resources. This is concluded from the observationthat phytoplankton biomass always falls far short of the nutrient-dependentcarrying capacity of the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号