首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2001年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The relationship between bacterial oxidation of hydrocarbons and sulfate reduction was studied in the experimental system with liquid paraffin was used as a source of organic compounds inoculated with silt taken from a reservoir. Pseudomonads dominated in the hydrocarbon-oxidizing silt bacteriocenosis. However, Rhodococcus and Arthrobacteria amounted to not more than 3%. Arthrobacteria dominated the microbial association formed in the paraffin film of the model system. Sulfate-reducing bacteria were represented by genera Desulfomonas, Desulfotomaculum, and Desulfovibrio. The growth of sulfate-reducing bacteria in media containing with paraffin, successive products of its oxidation (cetyl alcohol, stearate, and acetate), and extracellular metabolites of hydrocarbon-reducing bacteria was studied. The data showed that sulfate-reducing bacteria did not use paraffin or cetyl alcohol as growth substrates. However, active growth of sulfate-reducing bacteria was observed in the presence of stearate and extracellular water-soluble or lipid metabolites of Arthrobacteria.  相似文献   
2.
The relationship between bacterial oxidation of hydrocarbons and sulfate reduction was studied in an experimental system with liquid paraffin used as a source of organic compounds inoculated with silt taken from a reservoir. Pseudomonads dominated in the hydrocarbon-oxidizing silt bacteriocenosis. However, Rodococcusand Arthrobacteria amounted to no more than 3%. Arthrobacteria dominated the microbial association formed in the paraffin film of the model system. Sulfate-reducing bacteria were represented by genera Desulfomonas, Desulfotomaculum, and Desulfovibrio. The growth of sulfate-reducing bacteria in media containing paraffin, successive products of its oxidation (cetyl alcohol, stearate, and acetate), and extracellular metabolites of hydrocarbon-reducing bacteria was studied. The data showed that sulfate-reducing bacteria did not use paraffin or cetyl alcohol as growth substrates. However, active growth of sulfate-reducing bacteria was observed in the presence of stearate and extracellular water-soluble or lipid metabolites of Arthrobacteria.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号