首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  23篇
  2019年   1篇
  2017年   1篇
  2013年   1篇
  2012年   3篇
  2010年   1篇
  2007年   2篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
In diving birds and mammals, bradycardia and peripheral vasoconstriction potentially isolate muscle from the circulation. During complete ischemia, ATP production is dependent on the size of the myoglobin oxygen (O(2)) store and the concentrations of phosphocreatine (PCr) and glycogen (Gly). Therefore, we measured PCr and Gly concentrations in the primary underwater locomotory muscle of emperor penguin and modeled the depletion of muscle O(2) and those energy stores under conditions of complete ischemia and a previously determined muscle metabolic rate. We also analyzed stroke rate to assess muscle workload variation during dives and evaluate potential limitations on the model. Measured PCr and Gly concentrations, 20.8 and 54.6 mmol kg(-1), respectively, were similar to published values for nondiving animals. The model demonstrated that PCr and Gly provide a large anaerobic energy store, even for dives longer than 20 min. Stroke rate varied throughout the dive profile, indicating muscle workload was not constant during dives as was assumed in the model. The stroke rate during the first 30 s of dives increased with increased dive depth. In extremely long dives, lower overall stroke rates were observed. Although O(2) consumption and energy store depletion may vary during dives, the model demonstrated that PCr and Gly, even at concentrations typical of terrestrial birds and mammals, are a significant anaerobic energy store and can play an important role in the emperor penguin's ability to perform long dives.  相似文献   
2.
Hypothesizing that emperor penguins (Aptenodytes forsteri) would have higher daily energy expenditures when foraging for their food than when being hand-fed and that the increased expenditure could represent their foraging cost, we measured field metabolic rates (FMR; using doubly labeled water) over 4-d periods when 10 penguins either foraged under sea ice or were not allowed to dive but were fed fish by hand. Surprisingly, penguins did not have higher rates of energy expenditure when they dove and captured their own food than when they did not forage but were given food. Analysis of time-activity and energy budgets indicated that FMR was about 1.7 x BMR (basal metabolic rate) during the 12 h d(-1) that penguins were lying on sea ice. During the remaining 12 h d(-1), which we termed their "foraging period" of the day, the birds were alert and active (standing, preening, walking, and either free diving or being hand-fed), and their FMR was about 4.1 x BMR. This is the lowest cost of foraging estimated to date among the eight penguin species studied. The calculated aerobic diving limit (ADL(C)), determined with the foraging period metabolic rate of 4.1 x BMR and known O(2) stores, was only 2.6 min, which is far less than the 6-min ADL previously measured with postdive lactate analyses in emperors diving under similar conditions. This indicates that calculating ADL(C) from an at-sea or foraging-period metabolic rate in penguins is not appropriate. The relatively low foraging cost for emperor penguins contributes to their relatively low total daily FMR (2.9 x BMR). The allometric relationship for FMR in eight penguin species, including the smallest and largest living representatives, is kJ d(-1)=1,185 kg(0.705).  相似文献   
3.
Summary Cardiac output was measured by the thermodilution method in three young harbor seals, at rest and while swimming up to the maximum effort for which they could be trained. Stroke volume was determined by counting heart rate simultaneously with determination of cardiac output. Cardiac outputs varied widely between surface breathing (7.8 ml · kg–1 · s–1) and breath-holding while swimming under water (1.8 ml · kg–1 · s–1). Stroke volume while at the surface was almost twice the volume white submerged. Surface cardiac output was always near maximal despite work effort, whereas submerged cardiac output gradually increased at higher work efforts. The cardiovascular performance of seals at the maximum MO2 we could induce from them is equivalent to that of the domestic goat.Abbreviations CO Cardiac output - HR Heart rate - SV Stroke volume - MO 2 Metabolic rate - FS Forced sumersion - V Velocity - C DF Frontal drag coefficient - CV Cardiovascular Present address: Institute of Marine Science, University of Alaska, Fairbanks, AK, USA  相似文献   
4.
Rod and cone visual pigments of 11 marine carnivores were evaluated. Rod, middle/long-wavelength sensitive (M/L) cone, and short-wavelength sensitive (S) cone opsin (if present) sequences were obtained from retinal mRNA. Spectral sensitivity was inferred through evaluation of known spectral tuning residues. The rod pigments of all but one of the pinnipeds were similar to those of the sea otter, polar bear, and most other terrestrial carnivores with spectral peak sensitivities (λmax) of 499 or 501 nm. Similarly, the M/L cone pigments of the pinnipeds, polar bear, and otter had inferred λmax of 545 to 560 nm. Only the rod opsin sequence of the elephant seal had sensitivity characteristic of adaptation for vision in the marine environment, with an inferred λmax of 487 nm. No evidence of S cones was found for any of the pinnipeds. The polar bear and otter had S cones with inferred λmax of ∼440 nm. Flicker-photometric ERG was additionally used to examine the in situ sensitivities of three species of pinniped. Despite the use of conditions previously shown to evoke cone responses in other mammals, no cone responses could be elicited from any of these pinnipeds. Rod photoreceptor responses for all three species were as predicted by the genetic data.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
5.
In order to evaluate hemodynamics and blood flow during rest-associated apnea in young elephant seals (Mirounga angustirostris), cardiac outputs (CO, thermodilution), heart rates (HR), and muscle blood flow (MBF, laser Doppler flowmetry) were measured. Mean apneic COs and HRs of three seals were 46% and 39% less than eupneic values, respectively (2.1+/-0.3 vs. 4.0+/-0.1 mL kg(-1) s(-1), and 54+/-6 vs. 89+/-14 beats min(-1)). The mean apneic stroke volume (SV) was not significantly different from the eupneic value (2.3+/-0.2 vs. 2.7+/-0.5 mL kg(-1)). Mean apneic MBF of three seals was 51% of the eupneic value. The decline in MBF during apnea was gradual, and variable in both rate and magnitude. In contrast to values previously documented in seals during forced submersions (FS), CO and SV during rest-associated apneas were maintained at levels characteristic of previously published values in similarly-sized terrestrial mammals at rest. Apneic COs of such magnitude and incomplete muscle ischemia during the apnea suggest that (1) most organs are not ischemic during rest-associated apneas, (2) the blood O(2) depletion rate is greater during rest-associated apneas than during FS, and (3) the blood O(2) store is not completely isolated from muscle during rest-associated apneas.  相似文献   
6.
7.
We developed an automated method using depth and one axis of body acceleration data recorded by animal-borne data loggers to identify activities of penguins over long-term deployments. Using this technique, we evaluated the activity time budget of emperor penguins (n = 10) both in water and on sea ice during foraging trips in chick-rearing season. During the foraging trips, emperor penguins alternated dive bouts (4.8±4.5 h) and rest periods on sea ice (2.5±2.3 h). After recorder deployment and release near the colony, the birds spent 17.9±8.4% of their time traveling until they reached the ice edge. Once at the ice edge, they stayed there more than 4 hours before the first dive. After the first dive, the mean proportions of time spent on the ice and in water were 30.8±7.4% and 69.2±7.4%, respectively. When in the water, they spent 67.9±3.1% of time making dives deeper than 5 m. Dive activity had no typical diurnal pattern for individual birds. While in the water between dives, the birds had short resting periods (1.2±1.7 min) and periods of swimming at depths shallower than 5 m (0.25±0.38 min). When the birds were on the ice, they primarily used time for resting (90.3±4.1% of time) and spent only 9.7±4.1% of time traveling. Thus, it appears that, during foraging trips at sea, emperor penguins traveled during dives >5 m depth, and that sea ice was primarily used for resting. Sea ice probably provides refuge from natural predators such as leopard seals. We also suggest that 24 hours of sunlight and the cycling of dive bouts with short rest periods on sea ice allow emperor penguins to dive continuously throughout the day during foraging trips to sea.  相似文献   
8.
Despite the widespread use of inhalational anesthesia with spontaneous ventilation in many studies of otariid pinnipeds, the effects and risks of anesthetic‐induced respiratory depression on blood gas and pH regulation are unknown in these animals. During such anesthesia in California sea lions (Zalophus californianus), blood gas and pH analyses of opportunistic blood samples revealed routine hypercarbia (highest PCO2 = 128 mm Hg [17.1 kPa]), but adequate arterial oxygenation (PO2 > 100 mm Hg [13.3 kPa] on 100% inspiratory oxygen). Respiratory acidosis (lowest pH = 7.05) was limited by the increased buffering capacity of sea lion blood. A markedly widened alveolar‐to‐arterial PO2 difference was indicative of atelectasis and ventilation‐perfusion mismatch in the lung secondary to hypoventilation during anesthesia. Despite the generally safe track record of this anesthetic regimen in the past, these findings demonstrate the value of high inspiratory O2 concentrations and the necessity of constant vigilance and caution. In order to avoid hypoxemia, we emphasize the importance of late extubation or at least maintenance of mask ventilation on O2 until anesthetic‐induced respiratory depression is resolved. In this regard, whether for planned or emergency application, we also describe a simple, easily employed intubation technique with the Casper “zalophoscope” for sea lions.  相似文献   
9.
Lung collapse is considered the primary mechanism that limits nitrogen absorption and decreases the risk of decompression sickness in deep-diving marine mammals. Continuous arterial partial pressure of oxygen profiles in a free-diving female California sea lion (Zalophus californianus) revealed that (i) depth of lung collapse was near 225 m as evidenced by abrupt changes in during descent and ascent, (ii) depth of lung collapse was positively related to maximum dive depth, suggesting that the sea lion increased inhaled air volume in deeper dives and (iii) lung collapse at depth preserved a pulmonary oxygen reservoir that supplemented blood oxygen during ascent so that mean end-of-dive arterial was 74 ± 17 mmHg (greater than 85% haemoglobin saturation). Such information is critical to the understanding and the modelling of both nitrogen and oxygen transport in diving marine mammals.  相似文献   
10.
Swim velocities at 15-sec intervals and maximum depth per dive were recorded by microprocessor units on two "mixed diver" adult female northern fur seals during summer foraging trips. These records allowed comparison of swim velocities of deep (>75 m) and shallow (<75 m) dives.
Deep dives averaged 120 m depth and 3 min duration; shallow dives averaged 30 m and 1.2 min. Mean swim velocities on deep dives were 1.8 and 1.5 m/sec for the two animals; mean swim velocities on shallow dives were 1.5 and 1.2 m/sec. The number of minutes per hour spent diving during the deep and shallow dive patterns were 11 and 27 min, respectively.
Swim velocity, and hence, relative metabolic rate, did not account for the differences in dive durations between deep and shallow dives. The long surface durations associated with deep dives, and estimates of metabolic rates for the observed swim velocities, suggest that deep dives involve significant anaerobic metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号