首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2010年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 78 毫秒
1
1.
The lipid phosphatase PTEN functions as a tumor suppressor by dephosphorylating the D3 position of phosphoinositide-3,4,5-trisphosphate, thereby negatively regulating the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. In mammalian cells, PTEN exists either as a monomer or as a part of a >600-kDa complex (the PTEN-associated complex [PAC]). Previous studies suggest that the antagonism of PI3K/AKT signaling by PTEN may be mediated by a nonphosphorylated form of the protein resident within the multiprotein complex. Here we show that PTEN associates with p85, the regulatory subunit of PI3K. Using newly generated antibodies, we demonstrate that this PTEN-p85 association involves the unphosphorylated form of PTEN engaged within the PAC and also includes the p110β isoform of PI3K. The PTEN-p85 association is enhanced by trastuzumab treatment and linked to a decline in AKT phosphorylation in some ERBB2-amplified breast cancer cell lines. Together, these results suggest that integration of p85 into the PAC may provide a novel means of downregulating the PI3K/AKT pathway.The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway regulates glucose/nutrient homeostasis and cell survival and plays a central role in both normal metabolism and cancer. The PTEN tumor suppressor gene (29, 30, 54) negatively regulates the PI3K/AKT pathway by dephosphorylating the D3 hydroxyl subunit of phosphoinositide-3,4,5-trisphosphate, a key membrane phosphatidylinositol generated by PI3K (34). PTEN undergoes genetic or epigenetic inactivation in many malignancies, including glioblastoma, melanoma, and endometrial, prostate, and breast cancers, among others (6, 13, 22, 23, 47, 49-51, 55, 68). Similarly, germ line mutations of PTEN are associated with the development of hamartomatous neoplasias such as Cowden disease and Bannayan-Zonana syndrome (17, 21, 41).The tumor suppressor function of PTEN undergoes dynamic regulation involving both C-terminal phosphorylation and protein-protein interactions. Phosphorylation of serine and threonine residues at the PTEN C-terminal tail, mediated by kinases such as CK2 and glycogen synthase kinase 3β, alters its conformational structure and association with PDZ domain-containing proteins and attenuates PTEN enzymatic activity (1, 11, 20, 32, 45, 61-63, 66, 67, 71). Conversely, PTEN function is promoted in large part through its stabilization in unphosphorylated form by incorporation into a high-molecular-weight protein complex (the PTEN-associated complex [PAC]) (66). We first demonstrated the existence of the PAC through gel filtration studies of rat liver extracts, which identified PTEN within a high-molecular-mass peak (>600 kDa), as well as a low-molecular-mass peak (40 to 100 kDa) in which PTEN is monomeric and phosphorylated (66). Subsequently, several PDZ domain-containing proteins were shown to interact with PTEN, including MAGI-1b, MAGI-2, MAGI-3, ghDLG, hMAST205, MSP58/MCRS1, NHERF1, and NHERF2, which mediate indirect binding with platelet-derived growth factor (PDGF) receptor β (25, 36, 42, 57, 66). More recently, LKB1, a serine/threonine kinase tumor suppressor (7), was also found to interact with and phosphorylate PTEN in vitro (36). In aggregate, these data suggest that PTEN functional output is controlled by a complex interplay of protein interactions and regulation of C-terminal phosphorylation.Beyond these interactions, there is also evidence to support additional regulatory mechanisms by which the tumor suppressor function of PTEN is mediated. The herpesvirus-associated ubiquitin-specific protease was shown to interact directly with PTEN and promote its nuclear entry (53). Both ubiquitination and relocalization into the nucleus constitute important PTEN regulatory mechanisms (53, 64). In many tumors, PTEN nuclear exclusion has been associated with poor cancer prognosis and more aggressive cancer development (15, 44, 56). Moreover, successful treatment of acute promyelocytic leukemia was shown to be associated with an increase in monoubiquitinylation and relocation of PTEN into the nucleus (53).Like PTEN, the p85 regulatory subunit of PI3K serves as a prominent modulator of PI3K/AKT signaling. p85, which exists in three isoforms (α, β, and γ), targets the catalytic (110-kDa) PI3K subunit to the membrane, which brings it into proximity with membrane-associated phosphatidylinositol lipids. In the steady state, p85 forms a tight association with the catalytic PI3K subunit, usually p110α or p110β in nonhematopoietic cells, with p110δ predominating in leukocytes (19). Consistent with this notion, p85 and p110 exist in equimolar ratios in a wide variety of mammalian cell lines and tissues (19), although some studies have suggested a role for free p85 in cell signaling (33, 65).Several recent lines of evidence have begun to support a possible regulatory relationship between PTEN and p85 (reviewed in references 3 and 53). For example, liver-specific deletion of PIK3R1, which encodes the p85α regulatory subunit, reduces both the activation of PI3K and PTEN enzymatic activity in this context. As a result, p85α-deficient hepatic cells express elevated levels of phosphoinositide trisphosphate and exhibit prolonged AKT activation (60). In addition, both PTEN and p85 are regulated by small GTPase proteins such as RhoA, but PTEN coimmunoprecipitates with the RhoA effector Rock only in the presence of PI3K (18, 31, 37). Although only correlative in nature, these findings may suggest a possible role for PTEN in p85 regulation or vice versa, in addition to its known function as a direct antagonist of the PI3K/AKT pathway (3, 9, 52, 57, 60).In the present study, we demonstrate an endogenous association between p85 and PTEN. Using newly generated antibodies that selectively recognize the PTEN C-terminal tail in its unphosphorylated form, we demonstrate that this PTEN-p85 association preferentially involves the unphosphorylated form of PTEN. The specificity of this interaction was confirmed using multiple antibodies and through studies of both human cancer cells and murine embryonic fibroblasts (MEFs) deficient for specific p85 subunits. This association, which also engages p110β, is enhanced by trastuzumab treatment and correlates with diminished AKT phosphorylation. These results support a functional role for the PTEN-p85 association that may have important biological and therapeutic implications for PI3K/AKT pathway regulation.  相似文献   
2.
Systematic characterization of cancer genomes has revealed a staggering number of diverse aberrations that differ among individuals, such that the functional importance and physiological impact of most tumor genetic alterations remain poorly defined. We developed a computational framework that integrates chromosomal copy number and gene expression data for detecting aberrations that promote cancer progression. We demonstrate the utility of this framework using a melanoma data set. Our analysis correctly identified known drivers of melanoma and predicted multiple tumor dependencies. Two dependencies, TBC1D16 and RAB27A, confirmed empirically, suggest that abnormal regulation of protein trafficking contributes to proliferation in melanoma. Together, these results demonstrate the ability of integrative Bayesian approaches to identify candidate drivers with biological, and possibly therapeutic, importance in cancer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号