首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2007篇
  免费   169篇
  2023年   4篇
  2022年   13篇
  2021年   29篇
  2020年   16篇
  2019年   19篇
  2018年   24篇
  2017年   26篇
  2016年   44篇
  2015年   74篇
  2014年   94篇
  2013年   104篇
  2012年   163篇
  2011年   157篇
  2010年   91篇
  2009年   100篇
  2008年   117篇
  2007年   134篇
  2006年   112篇
  2005年   123篇
  2004年   99篇
  2003年   104篇
  2002年   99篇
  2001年   37篇
  2000年   17篇
  1999年   32篇
  1998年   31篇
  1997年   28篇
  1996年   29篇
  1995年   32篇
  1994年   29篇
  1993年   22篇
  1992年   26篇
  1991年   12篇
  1990年   14篇
  1989年   12篇
  1988年   15篇
  1987年   12篇
  1986年   9篇
  1985年   11篇
  1984年   8篇
  1983年   11篇
  1982年   7篇
  1981年   3篇
  1979年   9篇
  1978年   2篇
  1973年   4篇
  1972年   3篇
  1968年   4篇
  1964年   3篇
  1957年   1篇
排序方式: 共有2176条查询结果,搜索用时 109 毫秒
1.
2.
The growth (fresh and dry weight increase) of potato tuber ( Solanum tuberosum L. cv. Bintje) callus discs was stimulated by incubation in air with 500 ppm 2,5-norbornadiene (NBD, a competitive inhibitor of ethylene action) and inhibited by incubation in air with 4 000 ppm NBD. Ethylene formation by the callus was stimulated by NBD. The development of the alternative pathway, measured in isolated mitochondria was inhibited by NBD in a concentration-dependent way. The alternative pathway capacity, measured in vivo, was inhibited by 4 000 ppm NBD, but not by 500 ppm. Uninhibited in vivo respiration, which consists of cytochrome path activity and alternative path activity, was stimulated by the treatment with 500 ppm NBD. The main contribution to this stimulation was made by the cytochrome pathway. In 4 000 ppm NBD-treated callus, uninhibited respiration seemed to be unaffected as a consequence of an inhibited cytochrome path activity, which was compensated by a stimulated alternative path activity. Both in 500 and 4 OIK) ppm NBD-treated callus the alternative path activity in vivo was stimulated.
The regulatory role for endogenous ethylene in potato tuber callus is discussed in relation to: 1) The induction of respiratory pathways, 2) the supply of reduction equivalents in vivo and 3) growth.  相似文献   
3.
Summary We have made pairwise comparisons between the coding sequences of 21 genes from coldblooded vertebrates and 41 homologous sequences from warm-blooded vertebrates. In the case of 12 genes, GC levels were higher, especially in third codon positions, in warm-blooded vertebrates compared to cold-blooded vertebrates. Six genes showed no remarkable difference in GC level and three showed a lower level. In the first case, higher GC levels appear to be due to a directional fixation of mutations, presumably under the influence of body temperature (see Bernardi and Bernardi 1986b). These GC-richer genes of warm-blooded vertebrates were located, in all cases studied, in isochores higher in GC than those comprising the homologous genes of cold-blooded vertebrates. In the third case, increases appear to be due to a limited formation of GC-rich isochores which took place in some cold-blooded vertebrates after the divergence of warm-blooded vertebrates. The directional changes in the GC content of coding sequences and the evolutionary conservation of both increased and unchanged GC levels are in keeping with the existence of compositional constraints on the genome.  相似文献   
4.
The relationship between the binding of 125I-labeled rat ANF and the responsiveness in cGMP production of ANF receptors were examined in cultured rat thoracic smooth muscle cells after preexposure with the peptide. Binding assay of 125I-labeled ANF showed a specific, reversible and saturable binding with a KD value of 3.1 +/- 0.3 10(-10) M and a maximum binding (Bmax) of 240 +/- 30 fmol/10(6) cells. Pretreatment of the cells with increasing concentrations of unlabeled ANF (10(-9) M to 10(-7) M) resulted in a dose-dependent decrease of the number of binding sites without a change in the affinity. This effect was clearly associated with a desensitization of ANF-induced cGMP production.  相似文献   
5.
It is shown that in bulbous Iris zeatin originates from a nucleotide. This nucleotide is probably zeatin-allylic-phosphate, in which a phosphate group is attached to the isoprenoid side-chain of zeatin. The formation of zeatin-allylic-phosphate from t-zeatin and 8-[14C]-zeatin by the microsomal fractions of Iris bulb disks and Helianthus tubers was demonstrated. The responsible enzyme was partially purified. 5-AMP was found to be a phosphate group delivering substrate. Adenosine and adenine inhibited the enzyme reaction. The significance of the results is discussed in relation to cytokinin biosynthesis and the occurrence of bud blast in Iris.  相似文献   
6.
Synechococcus sp. PCC7942 recipient strains were constructed for the chromosomal integration of DNA fragments cloned in any pBR322-derived vector, which carries the ampicillin resistance (ApR) marker. The construction was based on the incorporation of specific recombination targets, the so-called 'integration platforms', into the chromosomal metF gene. These platforms consist of an incomplete bla gene (ApS) and the pBR322 ori separated from each other by a gene encoding an antibiotic (streptomycin or kanamycin) resistance (SmR or KmR). Recombination between a pBR322-derived donor plasmid and such a chromosomal platform results with high frequency in restoration of the bla gene and replacement of the chromosomal marker (SmR or KmR) by the insert of the donor plasmid. The integration into the platform depends on recombination between pBR322 ori and bla sequences only and is therefore independent of the DNA insert to be transferred. The desired recombinants are found by selection for a functional bla gene (ApR) and subsequent screening for absence of the chromosomal antibiotic marker. Gene transfer with this integration system was found to occur efficiently and reliably. Furthermore, the presence of the pBR322 ori in the platform allowed for 'plasmid rescue' of integrated sequences. The system was applied successfully for the transfer of the gene encoding plastocyanin (petE1) from Anabaena sp. PCC7937 and for the integration of an extra copy of the gene encoding ferredoxin I (petF1) from Synechococcus sp. PCC7942 itself.  相似文献   
7.
Incubation of potato tuber tissue discs on B5 medium supplemented with 1-naphtyl-acetic acid (NAA) led to callus formation, irrespective of the presence of kinetin; without NAA no callus formation occurred. Incubation in the presence of abscisic acid (ABA) reduced the increases in fresh weight and dry weight both in callus-forming and in non-callus-forming tissue. Mitochondrial respiration was lowered by ABA as well. The induction of the alternative, CN-resistant pathway was inhibited by the presence of ABA, especially in mitochondria from non-callus-forming tissue.The in vivo respiration of the callus-forming tissue was higher than that of the non-callus-forming tissue. Total respiration, cytochrome pathway activity and the capacity of the alternative pathway were all lowered in callus-forming tissue by treatment with ABA. The in vivo activity of the alternative pathway was low in all tissue types, especially after ABA-treatment. The slight stimulation by hydroxamates of the oxygen uptake of callus-forming tissue incubated on medium with NAA and ABA indicates the involvement of a hydroxamate-activated peroxidase in the oxygen uptake of this tissue; this peroxidase seemed not to participate in the oxygen uptake of the other tissues types.In non-callus-forming tissue the oxygen uptake of ABA-treated tissue was very low and almost completely resistant to the combined addition of inhibitors of both the cytochrome and the alternative pathway, indicating that the in vivo activity of the mitochondria in the oxygen uptake of the tissue was very low. The possible causes for this ABA-effect are discussed. In non-callus-forming tissue the treatment with ABA creates a situation which is comparable with that observed in intact potato tubers. This situation is characterized by a tissue respiration lower than that of the isolated mitochondria and an alternative pathway capacity that is low or absent.  相似文献   
8.
The effects of chloroquine and vinblastine (10-100 microM) on insulin degradation and biological action were studied in cultured foetal rat hepatocytes. Insulin degradation, as measured by the release of trichloroacetic acid-soluble radioactivity from 125I-insulin into the medium, was strictly cell-associated, saturable with respect to insulin concentrations and linearly related to the amount of cell-associated hormone. The maximal rate of insulin degradation was 4,700 molecules/min per cell, and its KM about 5 nM. Thus, insulin receptors (30,000 sites/cell; half-life close to 13 hr) must be reutilized 450-fold before being degraded with an average time of reutilization inferior to 10 min. In the presence of 70 microM chloroquine or 100 microM vinblastine, insulin degradation was inhibited by 80% and the amount of cell-associated hormone enhanced 2-3-fold. Nearly total inhibition of insulin-stimulated glycogenesis was obtained with 70 microM chloroquine and 45 microM vinblastine. When hepatocytes were preincubated with chloroquine or vinblastine, insulin binding remained high for up to 4 hr, then progressively decreased thereafter. The addition of 10 nM native insulin during preincubation with the drugs resulted in an earlier and more pronounced decrease in insulin binding, whereas native insulin alone did not induce any change. Both the inhibition of insulin degradation and onset of receptor down-regulation suggest a drug-induced impairment in the receptor reutilization. This defect is correlated to a loss of the glycogenic effect of insulin in cultured foetal rat hepatocytes.  相似文献   
9.
Potato tuber ( Solanum tuberosum L. cv. Bintje) callus shows a decrease in fresh weight and an increase in dry weight upon transfer to nutrient medium supplemented with 0.3 or 0.5 M mannitol. The osmolarity of the intracellular fluid increases simultaneously. Probably mannitol is taken up from the medium till the osmolarity of the tissue is in equilibrium with that of the medium. After osmotic adaptation, on a medium with 0.5 M mannitol, growth is negligible, although the tissue retains its viability.
Respiration increases upon transfer to medium with extra mannitol, especially when expressed on a fresh weight basis. On this basis cytochrome and alternative pathway capacities do not change appreciably. The respiratory increase is exclusively caused by an increased engagement of the alternative pathway. The participation of this pathway in uninhibited respiration increases from about 10 to 90% upon transfer to medium with extra mannitol. The increase in respiration is partly correlated with the decrease in fresh weight upon transfer. Per disc, the capacities of the cytochrome and alternative pathway decline. Yet, total respiration per disc significantly increases due to the increased participation of the alternative pathway. This results in an almost equal ATP-production per disc before and after transfer. We suggest, that the alternative pathway functions as a reserve capacity in potato callus, which is switched on when ATP-production coupled to the cytochrome pathway is impaired.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号