首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2010年   1篇
  2008年   2篇
  2001年   2篇
  1999年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
Porphobilinogen deaminase (PBGD) is a key enzyme of the heme biosynthetic pathway. Defects in the PBGD gene lead to an autosomal dominant disease, acute intermittent porphyria (AIP). Almost all AIP patients with rare exceptions are heterozygous for the defective gene. To date, at least 160 different mutations causing AIP are identified. Extensive investigations along this line are conducted in many countries of the world. In Russia these studies had not been hitherto performed. Here we report the results of molecular genetic examination of four Russian patients with AIP diagnosed from clinical symptoms. By direct sequencing of the PBGD gene or the corresponding cDNA, we have detected four mutations, three of which were not previously encountered in the world population. These are TAAG deletion in intron 7 between positions +2 and (IVS7 2-5 delTAAG); T deletion in the initiation codon ATG of exon 3, and the G for C replacement at position -1 of intron 5 (IVS5 as -1 G:C), which disrupts splicing. In addition, in one female patient, a known deletion CT in codon 68 was revealed. In two patients, expression of PBGD gene alleles was significantly disproportional, so that normal mRNA prevailed in one case and mRNA of nonerythroid type in the other. Deletion in intron 7 was easily detectable due to the formation of a heteroduplex fragment with abnormal electrophoretic mobility directly in PCR. This simple heteroduplex analysis allowed us to exclude AIP carriage in son and daughter of a female patient with the genetic defect.  相似文献   
2.
Identical antigenic determinants are discovered on the surface of human erythrokaryocytes with antibodies against specific antigen of murine erythroblasts (Ag-Ed), previously revealed in study of Rauscher leukemia, in the immunofluorescent and cytotoxic tests. The antigen is present on the membranes of the majority of human embryonic liver and adult bone marrow nuclear erythroid cells, but is not found in fetal thymocytes, newborn kidney cells, adult human hepatic cells and in peripheral blood erythrocytes. Ag-Eb appears to possess an inter-species determinant, shared by mammalian nuclear erythroid cells, and may be used as their specific marker.  相似文献   
3.
4.
According to previously reported data, the supernatant of a primary culture of human erythrocytes contains 33 hemoglobin fragments. An analysis of the supernatant of a 20% (v/v) suspension of human erythrocytes allowed us to identify additionally four peptides whose precursors are cytoplasmic beta-actin (two fragments), fructose diphosphate aldolase B, and an unknown protein, as well as the amino acids tyrosine and tryptophan. The composition and the content of the components of the supernatant did not depend on the age or blood group of donors. The dynamics of accumulation in the supernatant (20-80 min of incubation) of the 14 hemoglobin fragments with the most reliably reproducible contents was obtained. The content of six peptides increased more than twofold between 20 and 40 min of incubation: the maximum increase in concentration was observed between 40 and 80 min (140%). The level of peptides that had the maximum concentration at the end of incubation was about 1000 pmol/ml of sedimented erythrocytes. The biological effects of the peptides identified in the supernatant of erythrocytes involve the stimulation of proliferation and hemopoiesis, suppression of proliferation, a bactericide effect, etc. These effects indicate the physiological importance of peptide release by erythrocytes. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru.  相似文献   
5.
According to the previously reported data, the superntant of the primary culture of human erythrocytes contains 33 hemoglobin fragments. An analysis of the supernatant of a 20% (v/v) suspension of human erythrocytes allowed us to identify additionally four peptides whose precursors are cytoplasmic β-actin (two fragments), fructose diphosphate aldolase B, and an unknown protein, and amino acids tyrosine and tryptophan. The composition and the content of the components of the supernatant did not depend on the age and blood group of donors. The dynamics of accumulation in the supernatant (20–80 min of incubation) of 14 hemoglobin fragments with the most reliably reproducible contents was obtained. The content of six peptides increased more than twofold between 20 and 40 min of incubation; the maximum increase in concentration was observed between 40 and 80 min (140%). The level of peptides that had the maximum concentration at the end of incubation was about 1000 pmol/ml of sedimented erythrocytes. The biological effects of the peptides identified in the supernatant of erythrocytes involve the stimulation of proliferation and hemopoiesis, suppression of proliferation, a bactericide effect, etc. These effects indicate the physiological importance of the peptide release by erythrocytes.  相似文献   
6.
Immunofluorescense and cytotoxicity test in vitro were used to demonstrate specific antibodies in sera of 11 out of 19 patients with partial red cell aplasia (PRCA). The antibodies reacted with erythroblast cells from embryos and adult men, with bone marrow cells from a female patient suffering from acute erythroleukemia, with erythrokaryocytes of mouse embryos and cells of Rauscher's viral erythroleukemia. The results of cross adsorption and blockade of the immunofluorescent reaction of the sera of PRCA patients with antibodies against mouse erythroblast antigen bearing an interspecies determinant suggest that in the pathogenesis of PRCA there takes part an autoimmune reaction against specific interspecies antigen to erythrokaryocytes. This antigen is apparently similar to antigen against mouse erythroblast cells.  相似文献   
7.
Porphobilinogen deaminase (PBGD) is a key enzyme of the heme biosynthetic pathway. Defects in the PBGD gene lead to an autosomal dominant disease, acute intermittent porphyria (AIP). Almost all AIP patients with rare exceptions are heterozygous for the defective gene. To date, at least 160 different mutations causing AIP are identified. Extensive investigations along this line are conducted in many countries of the world. In Russia these studies had not been hitherto performed. Here we report the results of molecular genetic examination of four Russian patients with AIP diagnosed from clinical symptoms. By direct sequencing of the PBGD gene or the corresponding cDNA, we have detected four mutations, three of which were not previously encountered in the world population. These are TAAG deletion in intron 7 between positions +2 and +5 (IVS7 2–5 delTAAG); T deletion in the initiation codon ATG of exon 3, and the G for C replacement at position –1 of intron 5 (IVS5 as –1 G–C), which disrupts splicing. In addition, in one female patient, a known deletion CT in codon 68 was revealed. In two patients, expression of PBGD gene alleles was significantly disproportional, so that normal mRNA prevailed in one case and mutant mRNA of nonerythroid type in the other. Deletion in intron 7 was easily detectable due to the formation of a heteroduplex fragment with abnormal electrophoretic mobility directly in PCR. This simple heteroduplex analysis allowed us to exclude AIP carriage in son and daughter of a female patient with the genetic defect.  相似文献   
8.
Acute intermittent porphyria (AIP) is an autosomal dominant hereditary disease, caused by partial deficiency of porphobilinogen deaminase (PBGD), one of the key enzymes of heme biosynthesis. This study describes molecular genetics of AIP in Russia. Mutation analysis of PBGD gene in 70 unrelated patients revealed 47 various genetic defects, 28 of which had not been described previously. Mutations 53delT and Arg173Trp (recorded 8 times, in total 23%) proved to be the most common in Russia. Microdeletion 53delT has monophyletic origin and was found only in Russia. Molecular genetic examination of 132 relatives of AIP patients from 40 families revealed 52 latent carriers of the disease. Low (about 10%) AIP penetrance indicates that a mutation in the PBGD gene is an important but not sufficient prerequisite for clinical manifestation of the disease. Modulation of penetrance in erythropoietic protoporphyria by coinheritance of a mutant allele and a functionally defective wild type allele of ferrochetalase gene has been shown previously. We hypothesized that similar mechanism works in AIP. Sequencing of the full length PBGD genes from unrelated AIP patients as well as SNP analysis, and the analysis of abnormal PBGD mRNA splicing showed that in case of AIP, this hypothesis is not true and some other factors are responsible for the penetrance of this disease.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号