首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  国内免费   18篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2001年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.

Due to their large-scale manufacture and widespread application, there have been a number of studies related to toxicological assessment of nanomaterials (NMs) over the past decade. Although there has been extensive research on the cytotoxicity of NMs, concerns have been raised about their possible genotoxicity. The genome is constantly exposed to genotoxic insults that can lead to DNA damage, which in turn can have consequences for health, such as the induction of carcinogenesis. This comprehensive review focuses on the direct and indirect interactions of NMs with DNA. Factors influencing the genotoxicity of NMs, such as their physicochemical characteristics, are also discussed. The mechanisms involved in the direct and indirect interactions of NMs with DNA are also reviewed. Many studies have shown that ENMs have genotoxic effects, such as chromosomal fragmentation, DNA strand breaks, point mutations, oxidative DNA adducts, apoptosis, hypoxic responses, mitochondrial dysfunction, and epigenetic modifications. As the data reported to date are inconsistent, it is difficult to draw definitive conclusions regarding the features of NMs that promote genotoxicity. Therefore, challenges and future research perspectives are discussed. This review provides insights into the genotoxic effects of NMs and their consequences for human health.

  相似文献   
2.
Mitotic Catastrophe的研究进展   总被引:1,自引:0,他引:1  
细胞死亡是多细胞生物生命过程中重要的生理或病理现象,可分为坏死和程序性细胞死亡,而后者根据死亡细胞的形态学和发生机制的不同又可分为凋亡、自吞噬和mitotic catastrophe,其中mitotic catastrophe是近年来才被揭示报道,是指细胞在有丝分裂过程中死亡的现象,是一种发生在细胞有丝分裂期由于异常的细胞分裂而导致的细胞死亡,它常常伴随着细胞有丝分裂检查点的异常和基因或纺锤体结构的损伤而发生。现对mitotic catastrophe及相关的调控机制进行综述。  相似文献   
3.
中心体是动物细胞有丝分裂期微管组织中心,对于细胞有丝分裂期形成纺锤体、正常分裂及染色体精确分离至关重要. 中心体失调控常造成遗传物质错误分配,最终诱发肿瘤形成.因此,对中心体结构及数量的精密调控将对细胞命运起着决定 作用.目前发现,中心体至少包含100多种调节蛋白,这些蛋白在细胞内的功能各异.最近很多研究显示,多种DNA损伤修复及 应答通路的激酶或磷酸酶定位于中心体,并且参与中心体调控.本文将对中心体结构、中心体复制、中心体分离、中心体扩 增、DNA损伤与中心体异常及DNA损伤反应性蛋白在中心体调控中的功能作一综述.  相似文献   
4.
γH2AX焦点(foci)被普遍当做DNA双链断裂(DSB)损伤的分子标志物.为探 讨细胞周期进程相关的H2AX磷酸化规律特征,采用胸腺嘧啶双阻滞结合噻氨酯哒唑(nocodazole)的后续处理,将HeLa细胞同步于有丝分裂的前中期.然后,用流式细胞仪检测细胞周期、Western印迹和免疫荧光法,观察γH2AX表达和γH2AX焦点的形成.结果显示,细胞进入G2/M期和有丝分裂过程中,γH2AX水平显著增加 ;在无DNA DSB发生的情况下,部分M期细胞中也存在大量的γH2AX焦点.随着细 胞完成有丝分裂从M期退出再进入G1期,γH2AX的表达水平逐渐降低.这种 γH2AX表达变化特征与G2/M期密切关联的PLK1和Cyclin B1的表达规律相类似. 在4 Gy大剂量照射下,HeLa细胞于照后8 到12 h出现明显的G2/M期阻滞.γH2AX 焦点数在照后1 h达高峰,随后降低,照后8 h又上升,出现了第2个峰值.与之不同的是,在1 Gy低剂量照射下,细胞的G2/M期阻滞微弱,γH2AX焦点数在照后 0.5 h最高,随后下降,且无反弹,符合DNA DSB的修复动力学特征.因此,将γ H2AX当做DNA DSB分子标志物时,还需要考虑细胞周期变化的影响.γH2AX适合 作为1 Gy以下照射的DNA双链断裂损伤的分子标志.  相似文献   
5.
用脉冲电场凝胶电泳和双标记基因质粒DNA转染技术研究辐射敏感的毛细血管扩张性共济失调症患者皮肤成纤维细胞(AT5BIVA)和正常辐射抗性的人宫颈癌细胞(HeLaS3)DNA双链断裂重接修复率及其忠实性。结果表明γ射线照射诱发DNA双链断裂的产额和重接修复率,在两株细胞间无差别.而AT细胞对导入的限制性内切酶EcoRV产生双链断裂质粒DNA的重接修复忠实性显著低于HelaS3te胞,表明AT细胞易发生DNA错误修复,这很可能就是AT细胞高度辐射敏感性的主要原因。  相似文献   
6.
为寻找放射敏感性基因,采用基因芯片技术筛选出辐射可诱导表达mRNA上调的基因,其中就有IER5.为探索IER5基因的生物学功能及其在宫颈癌放疗中的作用,采用RNA干扰技术构建IER5基因表达抑制的质粒载体并构建IER5-siRNA-HeLa细胞系.对该细胞系与HeLa细胞进行辐射,旨在了解IER5-siRNA-HeLa的细胞生长曲线、细胞周期等实验参数的变化,揭示了IER5基因在辐射诱导中的生物学功能.实验发现,IER5基因表达抑制可提高细胞分裂进入S期与G2-M期的比例,促进细胞分裂,促进细胞生长,提高细胞对辐射的拮抗性,同时发现IER5-siRNA-HeLa细胞在尺寸上大于HeLa细胞.研究表明,IER5基因表达抑制可促使细胞受辐射后发生S期与G2-M期的阻滞,IER5参与辐射细胞周期的调控,对临床宫颈癌放疗有一定的潜在应用价值.  相似文献   
7.
Polo样激酶1在细胞周期及细胞周期监测点中的功能   总被引:1,自引:0,他引:1  
Plk1(Polo-like kinase 1)是一类从酵母到人类都高度保守的丝氨酸/苏氨酸蛋白激酶,是真核细胞有丝分裂的重要调控因子.Plk1随有丝分裂进程定位于不同位点,调节分裂期进入、纺锤体形成和胞质分裂等过程.Plk1能够与磷酸化的停靠蛋白结合,从而在不同空间被激活以满足其在细胞周期中的不同功能.Plk1还参与G2和M期DNA损伤监测点的调节,对于DNA损伤恢复后重新进入有丝分裂期是必须的.目前,Plk1的重要功能尤其是在DNA损伤监测点中发挥的重要功能正在被广泛研究.Plk1在多种恶性肿瘤中存在过表达且与肿瘤发生密切相关,对于Plk1功能的深入研究为以Plk1为靶的肿瘤治疗提供理论依据  相似文献   
8.

Background  

When DNA double-strand breaks (DSB) are induced by ionizing radiation (IR) in cells, histone H2AX is quickly phosphorylated into γ-H2AX (p-S139) around the DSB site. The necessity of DNA-PKcs in regulating the phosphorylation of H2AX in response to DNA damage and cell cycle progression was investigated.  相似文献   
9.
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair. DNA-PKcs has also been shown recently functioning in mitotic regulation. Here, we report that DNA-PKcs negatively regulates the stability of Cyclin B1 protein through facilitating its ubiquitination mediated by Cdh1 / E 3 ubiquitin ligase APC/C pathway. Loss of DNA-PKcs causes abnormal accumulation of Cyclin B1 protein. Cyclin B1 degradation is delayed in DNA-PKcs-deficient cells as result of attenuated ubiquitination. The impact of DNA-PKcs on Cyclin B1 stability relies on its kinase activity. Our study further reveals that DNA-PKcs interacts with APC/C core component APC2 and its co-activator Cdh1. The destruction of Cdh1 is accelerated in the absence of DNA-PKcs. Moreover, overexpression of exogenous Cdh1 can reverse the increase of Cyclin B1 protein in DNA-PKcs-deficient cells. Thus, DNA-PKcs, in addition to its direct role in DNA damage repair, functions in mitotic progression at least partially through regulating the stability of Cyclin B1 protein.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号