首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2002年   2篇
  2001年   8篇
  2000年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
2.
ATP -amides containing in -N-position 1-methylpyrene, 9-methylanthracene, 10-chloro-9-methyl-anthracene, and 3-methylperylene residues were synthesized and characterized. These compounds were used as sensitizers of site-specific photomodification of the reconstituted elongating complex of the mammalian DNA polymerase . The photomodification was carried out with the use of photoaffinity reagents, which were synthesized in situby the 5"-32P-labeled primers extension with photoreactive analogues of dCTP containing in the exo-N-position of cytosine various perfluoroarylazide groups. The effect of structures of the sensitizers and photoreactive reagents on the efficiency and selectivity of photocrosslinking of primers to the enzyme and template, as well as formation of a number of other photomodification products was studied. It was shown that the sensitizers containing 10-chloro-9-methylanthracene and 3-methylperylene residues allow one to obtain photocrosslinks under such irradiation conditions when photomodification in their absence is not essentially observed.  相似文献   
3.
Recognition of new DNA nucleotide excision repair (NER) substrate analogs, 48-mer ddsDNA (damaged double-stranded DNA), by human replication protein A (hRPA) has been analyzed using fluorescence spectroscopy and photoaffinity modification. The aim of the present work was to find quantitative characteristics of RPA-ddsDNA interaction and RPA subunits role in this process. The designed DNA structures bear bulky substituted pyrimidine nitrogen bases at the inner positions of duplex forming DNA chains. The photoreactive 4-azido-2,5-difluoro-3- pyridin-6-yl (FAP) and fluorescent antracenyl, pyrenyl (Antr, Pyr) groups were introduced via different linker fragments into exo-4N of deoxycytidine or 5C of deoxyuridine. J-dU-containing DNA was used as a photoactive model of undamaged DNA strands. The reporter group was a fluorescein residue, introduced into the 5'-phosphate end of one duplex-forming DNA strand. RPA-dsDNA association constants and the molar RPA/dsDNA ratio have been calculated based on fluorescence anisotropy measurements under conditions of a 1:1 RPA/dsDNA molar ratio in complexes. The evident preference for RPA binding to ddsDNA over undamaged dsDNA distinctly depends on the adduct type and varies in the following way: undamaged dsDNA < Antr-dC-ddsDNA < mmdsDNA < FAPdU-, Pyr-dU-ddsDNA < FAP-dC-ddsDNA (K(D) = 68 +/- 1; 25 +/- 6; 13 +/- 1; 8 +/- 2, and 3.5 +/- 0.5 nM correspondingly) but weakly depends on the chain integrity. Interestingly the bulkier lesions not in all cases have a greater effect on RPA affinity to ddsDNA. The experiments on photoaffinity modification demonstrated only p70 of compactly arranged RPA directly interacting with dsDNA. The formation of RPA-ddsDNA covalent adducts was drastically reduced when both strands of DNA duplex contained virtually opposite located FAP-dC and Antr-dC. Thus RPA requires undamaged DNA strand presence for the effective interaction with dsDNA bearing bulky damages and demonstrates the early NER factors characteristic features underlying strand discrimination capacity and poor activity of the NER system toward double damaged DNA.  相似文献   
4.
The thermostable DNA-polymerase from Thermus thermophilus B35 (Tte-polymerase) was affinity labeled by a binary system of photoreagents comprising base-substituted TTP analogs. The 5;-[32P]-labeled primer was elongated by Tte-polymerase in the presence of a TTP analog containing the photoreactive 2,3,5, 6-tetrafluoro-4-azidobenzoyl group (FAB-4-dUTP). Then the reaction mixture was UV-irradiated (365-450 nm) in the presence or the absence of a photosensitizer (TTP analog containing a pyrene moiety, Pyr-dUTP). The initial rate of the Pyr-dUTP-sensitized photomodification was almost 10-fold higher than the rate of direct photomodification (in the absence of Pyr-dUTP); in the case of the sensitized modification, the product of covalent cross-linking of the photoreactive primer with Tte-polymerase was apparently homogenous according to the data of electrophoresis. The enzyme was protected from the photosensitized modification by dNTP. To confirm the selectivity of the photosensitized modification of Tte-polymerase, another DNA-binding protein (human replication factor A, RPA) was added to the reaction mixture. In the presence of the photosensitizer (Pyr-dUTP), RPA was not labeled and only Tte-polymerase was modified, whereas in the case of direct modification, Tte-polymerase and the p32 and p70 subunits of RPA were labeled. The suggested method enables highly selective affinity modification of DNA-polymerases.  相似文献   
5.
Replication protein A (RPA) is a heterotrimeric protein that has high affinity for single-stranded (ss) DNA and is involved in DNA replication, repair, and recombination in eukaryotic cells. Photoaffinity modification was employed in studying the interaction of human RPA with DNA duplexes containing various gaps, which are similar to structures arising during DNA replication and repair. A photoreactive dUMP derivative was added to the 3" end of a gap-flanking oligonucleotide with DNA polymerase , and an oligonucleotide containing a 5"-photoreactive group was chemically synthesized. The 5" end predominantly interacted with the large RPA subunit (p70) regardless of the gap size, whereas interactions of the 3" end with the RPA subunits depended both on the gap size and on the RPA concentration. Subunit p32 was mostly labeled in the case of a larger gap and a lower RPA concentration. The results confirmed the model of polar RPA–DNA interaction, which has been advanced earlier.  相似文献   
6.
A new photoreactive oligonucleotide derivative was synthesized with a perfluoroarylazido group attached to the 2'-position of the ribose fragment of the 5'-terminal nucleotide. Using this conjugate, photoreactive DNA duplexes were produced which contained single-stranded regions of different length, single-stranded breaks (nicks), and also ds duplex with a photoreactive group inside one of the chains. These structures imitate DNA intermediates generated at different stages of DNA replication and repair. The interaction of replication protein A (RPA) with the resulting DNA structures was studied using photoaffinity modification and gel retardation assay. Independently of the DNA structure, only the large subunit of RPA (p70) was crosslinked to photoreactive DNAs, and the intensity of its labeling increased with decrease in the size of the single-stranded region and was maximal in the case of the nick-containing DNA structure. By gel retardation, the most effective binding of RPA to this structure was shown, whereas the complexing of RPA with DNA containing the unmodified nick and also with the full duplex containing the photoreactive group inside the chain was significantly less effective. The data suggest that RPA should be sensitive to such damages in the double-stranded DNA structure.  相似文献   
7.
8.
To introduce photoreactive dNTP residues to the 3'-end of a mononucleotide gap, base-substituted photoreactive deoxynucleoside triphosphate derivatives, (5-[N-(2,3,5,6-tetrafluoro-4-azidobenzoyl)-trans-3-aminopropenyl-1]- and 5-(N-[N-(4-azido-2,5-difluoro-3-chloropyridine-6-yl)-3-aminopropionyl]- trans-3-aminopropenyl-1)-2'-deoxyuridine 5'-triphosphates, were used as substrates in the DNA polymerase beta-catalyzed reaction. The resulting nick, containing a modified base at the 3'-end, was sealed by T4 phage DNA ligase. This approach enables the preparation of DNA duplexes bearing photoreactive groups at predetermined position(s) of the nucleotide chain. Using the generated photoreactive DNA duplexes, the photoaffinity modifications of DNA polymerase beta and human replicative protein A (hRPA) were carried out. It was shown that DNA polymerase beta and hRPA subunits were modified with the photoreactive double-stranded DNA considerably less effectively than by the nicked DNA. In the case of double-stranded DNA, the hRPA p70 subunit was preferentially labeled, implying a crucial role of this subunit in the protein-DNA interaction.  相似文献   
9.
Nucleotide excision repair (NER) is a multistep process of recognition and elimination of a wide spectrum of damages that cause significant distortions in DNA structure, such as UV-induced damage and bulky chemical adducts. A series of model DNAs containing new bulky fluoro-azidobenzoyl photoactive lesion dCFAB and well-recognized nonnucleoside lesions nFlu and nAnt have been designed and their interaction with repair proteins investigated. We demonstrate that modified DNA duplexes dCFAB/dG (probe I), dCFAB/nFlu+4 (probe II), and dCFAB/nFlu?3 (probe III) have increased (as compared to unmodified DNA, umDNA) structure-dependent affinity for XPC—HR23B (Kdum > KdI > KdIIKdIII) and differentially crosslink to XPC and proteins of NER-competent extracts. The presence of dCFAB results in (i) decreased melting temperature (ΔTm = ?3°C) and (ii) 12° DNA bending. The extended dCFAB/dG-DNA (137 bp) was demonstrated to be an effective NER substrate. Lack of correlation between the affinity to XPC—HR23B and substrate properties of the model DNA suggests a high impact of the verification stage on the overall NER process. In addition, DNAs containing closely positioned, well-recognized lesions in the complementary strands represent hardly repairable (dCFAB/nFlu+4, dCFAB/nFlu?3) or irreparable (nFlu/nFlu+4, nFlu/nFlu?3, nAnt/nFlu+4, nAnt/nFlu?3) structures. Our data provide evidence that the NER system of higher eukaryotes recognizes and eliminates damaged DNA fragments on a multi-criterion basis.  相似文献   
10.
Replication Protein A is a single-stranded (ss) DNA-binding protein that is highly conserved in eukaryotes and plays essential roles in many aspects of nucleic acid metabolism, including replication, recombination, DNA repair and telomere maintenance. It is a heterotrimeric complex consisting of three subunits: RPA1, RPA2 and RPA3. It possesses four DNA-binding domains (DBD), DBD-A, DBD-B and DBD-C in RPA1 and DBD-D in RPA2, and it binds ssDNA via a multistep pathway. Unlike the RPA1 and RPA2 subunits, no ssDNA-RPA3 interaction has as yet been observed although RPA3 contains a structural motif found in the other DBDs. We show here using 4-thiothymine residues as photoaffinity probe that RPA3 interacts directly with ssDNA on the 3′-side on a 31 nt ssDNA.The replication protein A (RPA) is a single-stranded (ss) DNA-binding protein that is highly conserved in eukaryotes (1–3). RPA is one of the key players in various essential processes of DNA metabolism including replication, recombination, DNA repair and telomere maintenance (1,2,4–9). The functions of this protein are based on its DNA-binding activity and specific protein–protein interactions. Its ssDNA binding properties depend on DNA length and nucleotide sequence (6,10–13). RPA is a heterotrimeric protein, composed of 70-, 32- and 14-kDa subunits, commonly referred to as RPA1, RPA2 and RPA3, respectively. There are four DNA-binding domains (DBD) located in RPA1 (DBD A, DBD B, DBD C and DBD F), one located in RPA2 (DBD D) and one belongs to RPA3 (DBD E). RPA interacts with ssDNA via four DBD: DBD A, DBD B, DBD C and DBD D (14).It is now accepted (11) that RPA binds to ssDNA in a sequential pathway with a defined polarity (15–17). RPA binds ssDNA with three different binding modes. First, binding initially involves an unstable recognition site of 8–10 nt with the high-affinity DBD A and DBD B domains on the 5′-side of the occluded ssDNA; it is designated ‘compact conformation’ or 8–10 nt binding mode. Second, this step is followed by the weaker binding of DBD C, on the 3′-side, leading to an intermediate or ‘elongated contracted’ (13–22 nt) binding mode (18–19). Finally binding of DBD D on the 3′-side forms a stable ‘elongated extended’ complex characterized by a 30 nt long occluded binding site (30 nt binding mode). Although RPA3 contains an Oligonucleotide-Binding (OB)-fold motif found in the other DBDs, there is presently no biochemical evidence that this subunit directly contacts DNA. Thus positioning of the RPA3 subunit relative to the other domains is still speculative (11,20). It has been clearly demonstrated that RPA3 is crucial for RPA function (1,2): RPA3 is involved in heterotrimer formation and is responsible for the polarity of binding to DNA (11,21,22). The scope of the data indicates that either RPA3 participates only in protein–protein interactions or that putative interaction of RPA3 with ssDNA is unstable and too transient to be detected by standard biochemical experiments. This latter possibility is likely if such interaction is provided by the 3′-side of the ssDNA, since it has been suggested that this region might be transiently accessible to the RPA DBD domains (23,24).In the past few years, thionucleobases have been extensively used as intrinsic photolabels to probe the structure in solution of folded molecules and to identify transient contacts within nucleic acids and/or between nucleic acids and proteins, in nucleoprotein assemblies (25). Thio residues such as 4-thiothymine and 6-thioguanine absorb light at wavelengths longer than 320 nm, and thus can be selectively photo-activated. Owing to the high photo-reactivity of their triplet state, they exhibit high photo-cross-linking ability towards nucleic acid bases as well as towards amino acid residues. Here we used a combination of approaches including gel retardation assays, chemical cross-linking and cross-linking with photoreactive ssDNA probes containing 4-thiothymine, introduced at a defined site in the sequence of the ssDNA, to study interactions present in human RPA (hRPA): ssDNA complexes. These studies coupled with the identification of cross-linked targets using specific antibodies revealed that in the elongated extended hRPA:ssDNA complex RPA3 closely contacts the 3′-end positioned nucleotide and yields a covalent adduct with zero-length photolabel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号