首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  2020年   1篇
  2017年   1篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2002年   3篇
  2000年   2篇
  1999年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
2.
The lack of specific markers for stem cells makes the physical identification of this compartment difficult. Hematopoietic stem cells differ in their repopulating and self-renewal potential. Our study shows that multiple classes of human hematopoietic CD34+ greatly differ in telomere length. Flow-cytometry-based fluorescent in situ hybridization and confocal microscopy of CD34+ cells has revealed remarkable telomere length heterogeneity, with a hybridization pattern consistent with different classes of human hematopoietic progenitor cells. These results also point to the existence of a significant clonal heterogeneity among primitive hematopoietic cells and provide the first evidence of a rare fraction of CD34+ cells with large telomeres in humans. Marta García-Escarp and Vanessa Martinez-Muñoz contributed equally to this work.This work was supported by a grant to J.P. from the Spanish Ministry of Science and Technology (SAF2002-02618) and by a grant to V.M.-M. from DakoCytomation.  相似文献   
3.
Proteomics applied to exercise physiology: a cutting-edge technology   总被引:1,自引:0,他引:1  
Exercise research has always drawn the attention of the scientific community because it can be widely applied to sport training, health improvement, and disease prevention. For many years numerous tools have been used to investigate the several physiological adaptations induced by exercise stimuli. Nowadays a closer look at the molecular mechanisms underlying metabolic pathways and muscular and cardiovascular adaptation to exercise are among the new trends in exercise physiology research. Considering this, to further understand these adaptations as well as pathology attenuation by exercise, several studies have been conducted using molecular investigations, and this trend looks set to continue. Through enormous biotechnological advances, proteomic tools have facilitated protein analysis within complex biological samples such as plasma and tissue, commonly used in exercise research. Until now, classic proteomic tools such as one- and two-dimensional polyacrylamide gel electrophoresis have been used as standard approaches to investigate proteome modulation by exercise. Furthermore, other recently developed in gel tools such as differential gel electrophoresis (DIGE) and gel-free techniques such as the protein labeling methods (ICAT, SILAC, and iTRAQ) have empowered proteomic quantitative analysis, which may successfully benefit exercise proteomic research. However, despite the three decades of 2-DE development, neither classic nor novel proteomic tools have been convincingly explored by exercise researchers. To this end, this review gives an overview of the directions in which exercise-proteome research is moving and examines the main tools that can be used as a novel strategy in exercise physiology investigation.  相似文献   
4.

Purpose

Sorafenib, an oral inhibitor of B-raf, VEGFR2, and PDGFR2-beta, acts against pancreatic cancer in preclinical models. Due to the radio-sensitization activity of both sorafenib and gemcitabine, we designed a multicenter, phase I trial to evaluate the safety profile and the recommended dose of this combination used with concomitant radiation therapy.

Methods

Patients with biopsy-proven, unresectable pancreatic adenocarcinoma (based on vascular invasion detected by computed tomography) were treated with gemcitabine (300 mg/m2 i.v. weekly ×5 weeks) concurrently with radiation therapy (45 Gy in 25 fractions) and sorafenib (escalated doses in a 3+3 design, from 200 to 800 mg/day). Radiation portals included the primary tumor but not the regional lymph nodes. Patients with planning target volumes (PTV) over 500 cc were excluded. Cases not progressing during chemoradiation were allowed to continue with sorafenib until disease progression.

Results

Twelve patients were included. Three patients received 200 mg/day, 6 received 400 mg/day, and 3 received 800 mg/day; PTVs ranged from 105 to 500 cc. No dose-limiting toxicities occurred. The most common grade 2 toxicities were fatigue, neutropenia, nausea, and raised serum transaminases. Treatment was discontinued in one patient because of a reversible posterior leukoencephalopathy. There were no treatment-related deaths.

Conclusion

The addition of sorafenib to concurrent gemcitabine and radiation therapy showed a favorable safety profile in unresectable pancreatic adenocarcinoma. A dose of 800 mg/day is recommended for phase II evaluation.

Trial Registration

EudraCT 2007-003211-31 ClinicalTrials.gov 00789763  相似文献   
5.
Several methodologies for the preparation of polyethylene glycol-grafted immunoliposomes have been developed by attaching antibodies to the terminus of the polymer. Unilamellar liposomes were prepared containing a combination of a functionalized polyethylene glycol(3400) and an inert polyethylene glycol(2000) phosphatidylethanolamine derivate up to 5 mol%. The greater length of the functionalized polyethylene glycol derivate did not alter the liposomal sterical stability or the remote loading of doxorubicin. Anti-CD34 immunoliposomes were prepared by the reaction of maleimide-derivatized My10 antibody with generated thiol groups at the periphery of the liposomes and efficiencies of nearly 100% were obtained. The greater accessibility of the reactive group makes this strategy more efficient than others described. The immunoliposomes prepared bound specifically to CD34+ cells.  相似文献   
6.

Background

Chimeraplasty is a novel methodology that uses chimeric RNA/DNA oligonucleotides (chimeraplasts) to stimulate genomic DNA repair. Efficient uptake and nuclear localization of intact chimeraplasts are key parameters to achieve optimal correction of mutation defects into specific cell types.

Methods

A 5′‐end FITC‐labeled 68‐mer RNA/DNA oligonucleotide was complexed with the polycation polyethylenimine (PEI) and the cationic lipids Cytofectin and GenePorter. Flow cytometry was employed to evaluate chimeraplast uptake under different conditions. Intracellular chimeraplast distribution and co‐localization with endocytosis markers were assessed by confocal microscopy. Relative quantification of chimeraplast metabolism was performed by denaturing PAGE and GeneScan? analysis.

Results

In airway epithelial cells, optimized chimeraplast uptake reached near 100% efficiency with the carriers tested. However, chimeraplast nuclear localization could only be achieved using PEI or Cytofectin. Chimeraplast/GenePorter lipoplexes were retained in the cytoplasm. PEI polyplexes and Cytofectin lipoplexes displayed different uptake rates and internalization mechanisms. Chimeraplast/PEI polyplexes were internalized at least partially by fluid‐phase endocytosis. In contrast, phagocytosis may have contributed to the internalization process of large‐sized chimeraplast/Cytofectin lipoplexes. Moreover, significant chimeraplast degradation was detected 24 h after transfection with both PEI polyplexes and Cytofectin lipoplexes, although the latter seemed to confer a higher degree of protection against nuclease degradation.

Conclusion

Both Cytofectin and PEI are efficient for chimeraplast nuclear uptake into airway epithelial cells. However, despite the distinct structures and trafficking pathways of the corresponding complexes, none of them could prevent nuclease‐mediated metabolism of the chimeric oligonucleotides. These findings should be taken into account for future investigations of chimeraplast‐mediated gene repair in airway epithelial cells. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   
7.
The aim of this study was to characterize the reactivity of monoclonal antibodies (mAbs) that had been submitted to the HLDA8 Workshop. The lineage specificity of target molecules was tested by analyzing their expression patterns on blood cells, leukocytes, and lymphocyte subsets. The expression of target molecules during B cell development, ranging from early precursors to plasma cells, was analyzed using a large panel of B cell lines. Our results have permitted us to characterize the expression of 10 new CD molecules: CD316 (HM1.24, BST2), CD268 (BAFF-R, TNFRSF13C), CD269 (BCMA, TNFRF17), CD267 (TACI, TNFRSF13B), CD275 (ICOSL, B7H2), CD254 (TRANCE, TNFSF11), CD252 (OX40L TNFSF4), CD315 (CD9-P), CD316 (EWI-2, PGRL), and CD307 (IRTA-2 or FcRH5). Three of these new CDs, CD267, CD269, and CD307 presented a B cell-restricted expression pattern. MAbs against these novel cell-surface molecules may offer new tools for research, diagnosis, and therapy.  相似文献   
8.
OBJECTIVE: To test the hypothesis that dedifferentiated adult human cartilage chondrocytes (HAC) are a true multipotent primitive population. METHODS: Studies to characterize dedifferentiated HAC included cell cycle and quiescence analysis, cell fusion, flow-FISH telomere length assays, and ABC transporter analysis. Dedifferentiated HAC were characterized by flow cytometry, in parallel with bone marrow mesenchymal stem cells (MSC) and processed lipoaspirate (PLA) cells. The in vitro differentiation potential of dedifferentiated HAC was studied by cell culture under several inducing conditions, in multiclonal and clonal cell populations. RESULTS: Long-term HAC cultures were chromosomically stable and maintained cell cycle dynamics while showing telomere shortening. The phenotype of dedifferentiated HAC was quite similar to that of human bone marrow MSC. In addition, this population expressed human embryonic stem cell markers. Multiclonal populations of dedifferentiated HAC differentiated to chondrogenic, osteogenic, adipogenic, myogenic, and neurogenic lineages. Following VEGF induction, dedifferentiated HAC expressed characteristics of endothelial cells, including AcLDL uptake. A total of 53 clonal populations of dedifferentiated HAC were efficiently expanded; 17 were able to differentiate to chondrogenic, osteogenic, and adipogenic lineages. No correlation was observed between telomere length or quiescent population and differentiation potential in the clones assayed. CONCLUSION: Dedifferentiated HAC should be considered a human multipotent primitive population.  相似文献   
9.
10.
Laryngeal cancer is a significant disease worldwide, which presents an increasing incidence. Two contrasting ideas of the immune system role during cancer development are accepted: (1) it fights tumor cells, and (2) it aids tumor progression. Thus, there is no clear understanding about the immune response in laryngeal cancer. Furthermore, since tobacco is the main cause of laryngeal cancer and it contains various carcinogenic components, including metallic elements, these may play a role on cancer development. Plasmas of patients with laryngeal cancer and of healthy smokers were evaluated by 2D gel electrophoresis and mass spectrometry. Proteins were detected on every gel around pH 4.0–10.0 from molecular mass of 10–60 kDa. Few differences were found among cancer and control patients. However, three spots gathered between pI 7.3 and 7.6 with different molecular masses appeared exclusively in cancer profiles. From ten spots identified, six correspond to immune system components, including the three differential ones. The latter were observed only in cancer patients. The presence of several trace elements in the identified proteins was determined by inductively coupled plasma mass spectrometry, where chromium was increased in all proteins analyzed from patients with cancer. This study reinforces the importance of the immune response as target in the understanding and treatment of laryngeal cancer and the possibility that chromium is important in the carcinogenic progress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号