首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2009年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Cardiac tamponade is the phenomenon of hemodynamic compromise caused by a pericardial effusion. Following a myocardial infarction, the most common causes of pericardial fluid include early pericarditis, Dressler's syndrome, and hemopericardium secondary to a free wall rupture. On transthoracic echocardiography, pericardial fluid appears as an echo-free space in between the visceral and parietal layers of the pericardium. Pericardial fat has a similar appearance on echocardiography and it may be difficult to discern the two entities. We present a case of a post-MI patient demonstrating pseudo tamponade physiology in the setting of excessive pericardial fat.  相似文献   
2.
To use primary cultures of human skeletal muscle cells to establish defects in glucose metabolism that underlie clinical insulin resistance, it is necessary to define the rate-determining steps in glucose metabolism and to improve the insulin response attained in previous studies. We modified experimental conditions to achieve an insulin effect on 3-O-methylglucose transport that was more than twofold over basal. Glucose phosphorylation by hexokinase limits glucose metabolism in these cells, because the apparent Michaelis-Menten constant of coupled glucose transport and phosphorylation is intermediate between that of transport and that of the hexokinase and because rates of 2-deoxyglucose uptake and phosphorylation are less than those of glucose. The latter reflects a preference of hexokinase for glucose over 2-deoxyglucose. Cellular NAD(P)H autofluorescence, measured using two-photon excitation microscopy, is both sensitive to insulin and indicative of additional distal control steps in glucose metabolism. Whereas the predominant effect of insulin in human skeletal muscle cells is to enhance glucose transport, phosphorylation, and steps beyond, it also determines the overall rate of glucose metabolism.  相似文献   
3.
Alpha-lipoic acid, which becomes a powerful antioxidant in its reduced form, has been suggested as a dietary supplement to treat diseases associated with excessive oxidant stress. Because the vascular endothelium is dysfunctional in many of these conditions, we studied the uptake, reduction, and antioxidant effects of alpha-lipoic acid in cultured human endothelial cells (EA.hy926). Using a new assay for dihydrolipoic acid, we found that EA.hy926 cells rapidly take up and reduce alpha-lipoic acid to dihydrolipoic acid, most of which is released into the incubation medium. Nonetheless, the cells maintain dihydrolipoic acid following overnight culture, probably by recycling it from alpha-lipoic acid. Acute reduction of alpha-lipoic acid activates the pentose phosphate cycle and consumes nicotinamide adenine dinucleotide phosphate (NADPH). Lysates of EA.hy926 cells reduce alpha-lipoic acid using both NADPH and nicotinamide adenine dinucleotide (NADH) as electron donors, although NADPH-dependent reduction is about twice that due to NADH. NADPH-dependent alpha-lipoic acid reduction is mostly due to thioredoxin reductase. Pre-incubation of cells with alpha-lipoic acid increases their capacity to reduce extracellular ferricyanide, to recycle intracellular dehydroascorbic acid to ascorbate, to decrease reactive oxygen species generated by redox cycling of menadione, and to generate nitric oxide. These results show that alpha-lipoic acid enhances both the antioxidant defenses and the function of endothelial cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号