首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  2021年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
Improvement in photosynthesis per unit leaf area has been difficult to alter by breeding or genetic modification. We report large changes in photosynthesis in Nicotiana tabacum transformed with E. coli genes for the trehalose pathway. Significantly, photosynthetic capacity (CO2 assimilation at varying light and CO2, and quantum yield of PSII electron transport) per unit leaf area and per leaf dry weight were increased in lines of N. tabacum transformed with the E. coli gene otsA, which encodes trehalose phosphate synthase. In contrast, transformation with otsB, which encodes trehalose phosphate phosphatase or Trec, encoding trehalose phosphate hydrolase, produced the opposite effect. Changes in CO2 assimilation per unit leaf area were closely related to the amount and activity of Rubisco, but not to the maximum activities of other Calvin cycle enzymes. Alterations in photosynthesis were associated with trehalose 6-phosphate content rather than trehalose. When growth parameters were determined, a greater photosynthetic capacity did not translate into greater relative growth rate or biomass. This was because photosynthetic capacity was negatively related to leaf area and leaf area ratio. In contrast, relative growth rate and biomass were positively related to leaf area. These results demonstrate a novel means of modifying Rubisco content and photosynthesis, and the complexities of regulation of photosynthesis at the whole plant level, with potential benefits to biomass production through improved leaf area.  相似文献   
2.
Carbon metabolite feedback regulation of leaf photosynthesis and development   总被引:16,自引:0,他引:16  
Photosynthesis is regulated as a two-way process. Light regulates the expression of genes for photosynthesis and the activity of the gene products (feedforward control). Rate of end-product use down-stream of the Calvin cycle, determined largely by nutrition and temperature, also affects photosynthetic activity and photosynthetic gene expression (feedback control). Whereas feedforward control ensures efficient light use, feedback mechanisms ensure that carbon flow is balanced through the pathways that produce and consume carbon, so that inorganic phosphate is recycled and nitrogen is distributed optimally to different processes to ensure growth and survival. Actual mechanisms are sketchy and complex, but carbon to nitrogen balance rather than carbon status per se is central to understanding carbon metabolite feedback control of photosynthesis. In addition to determining the activity of the metabolic machinery, carbon metabolite feedback mechanisms also regulate photosynthesis at the leaf level through the regulation of leaf development. This review summarizes the current sketchy, but growing, knowledge of the mechanisms through which carbon metabolite feedback mechanisms regulate leaf photosynthesis.  相似文献   
3.
4.
5.
Ascorbic acid (AA) fulfils many essential functions in plants. It is a key antioxidant and an important reducing substrate for a number of enzymes. The effects of low AA on plant architecture and leaf ultrastructure were studied in Arabidopsis thaliana mutants, which have constitutively moderately low (vtc1) or very low (vtc2) leaf AA contents compared with the wild type. Shoot development was comparable in all accessions over the first 14 d of growth. The production of primary roots was slightly different in vtc1, vtc2, and wild-type plants. However, the most notable difference was that a high proportion of the primary roots of the vtc2 plants grown on soil had lost the wild-type responses to gravity. The vtc mutants showed the antagonistic interaction between nitrate and sugar in the regulation of lateral root (LR) development that was observed in the wild type. However, the vtc2 mutants produced greater numbers of longer LRs than wild-type or vtc1 plants at all levels of nitrate. At later stages of development, the vtc rosettes were smaller than those of the wild type and the leaves showed intracellular structural changes that are consistent with programmed cell death (PCD). PCD symptoms such as nuclear chromatin condensation, the presence of multivesicular bodies, and extensive degradation and disorganization of the grana stacks were observed in 8-week-old vtc2 leaves and in 10-week-old vtc1 leaves. The data presented here illustrate the importance of tissue AA contents in regulating whole plant morphology, cell structure, and development.  相似文献   
6.
A combination of enzyme mapping, FT-IR microscopy and NMR spectroscopy was used to study temporal and spatial aspects of endosperm cell wall synthesis and deposition in developing grain of bread wheat cv. Hereward. This confirmed previous reports that changes in the proportions of the two major groups of cell wall polysaccharides occur, with β-glucan accumulating earlier in development than arabinoxylan. Changes in the structure of the arabinoxylan occurred, with decreased proportions of disubstituted xylose residues and increased proportions of monosubstituted xylose residues. These are likely to result, at least in part, from arabinoxylan restructuring catalysed by enzymes such as arabinoxylan arabinofurano hydrolase and lead to changes in cell wall mechanical properties which may be required to withstand stresses during grain maturation and desiccation.  相似文献   
7.
8.
9.
Background and AimsThe C4Urochloa species (syn. Brachiaria) and Megathyrsus maximus (syn. Panicum maximum) are used as pasture for cattle across vast areas in tropical agriculture systems in Africa and South America. A key target for variety improvement is forage quality: enhanced digestibility could decrease the amount of land required per unit production, and enhanced lipid content could decrease methane emissions from cattle. For these traits, loss-of-function (LOF) alleles in known gene targets are predicted to improve them, making a reverse genetics approach of allele mining feasible. We therefore set out to look for such alleles in diverse accessions of Urochloa species and Megathyrsus maximus from the genebank collection held at the CIAT.MethodsWe studied allelic diversity of 20 target genes (11 for digestibility, nine for lipid content) in 104 accessions selected to represent genetic diversity and ploidy levels of U. brizantha, U. decumbens, U. humidicola, U. ruziziensis and M. maximum. We used RNA sequencing and then bait capture DNA sequencing to improve gene models in a U. ruziziensis reference genome to assign polymorphisms with high confidence.Key ResultsWe found 953 non-synonymous polymorphisms across all genes and accessions; within these, we identified seven putative LOF alleles with high confidence, including those in the non-redundant SDP1 and BAHD01 genes present in diploid and tetraploid accessions. These LOF alleles could respectively confer increased lipid content and digestibility if incorporated into a breeding programme.ConclusionsWe demonstrated a novel, effective approach to allele discovery in diverse accessions using a draft reference genome from a single species. We used this to find gene variants in a collection of tropical grasses that could help reduce the environmental impact of cattle production.  相似文献   
10.
Seeds were obtained from seven natural populations of Acacia dealbata, three natural populations of A. mangium and a seed orchard of A. mangium, representing the natural range of the two species. Polyploids were discovered in two of the seven populations of A. dealbata. The 2C DNA amount for diploid A. dealbata (2n = 2x = 26) was 1.74 pg, and for diploid A. mangium (2n = 2x = 26) was 1.30 pg. A naturally occurring tetraploid of A. dealbata (2n = 4x = 52) had a 2C DNA amount of 3.41 pg and a naturally occurring triploid genotype had a 2C DNA amount of 2.53 pg. The use of colchicine and oryzalin was investigated as a means of producing higher frequencies of tetraploids of both A. mangium and A. dealbata for incorporation into breeding programmes. Colchicine treatment gave tetraploid frequencies up to 29% for A. dealbata seedlings, and up to 18% for A. mangium seedlings. In contrast, no tetraploid A. mangium was detected following oryzalin treatment, and the low frequencies of tetraploids observed in A. dealbata could be attributed to their natural occurrence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号