首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   14篇
  201篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   9篇
  2015年   17篇
  2014年   15篇
  2013年   13篇
  2012年   20篇
  2011年   22篇
  2010年   17篇
  2009年   7篇
  2008年   7篇
  2007年   14篇
  2006年   10篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1982年   1篇
  1978年   1篇
  1963年   1篇
  1960年   1篇
  1957年   1篇
排序方式: 共有201条查询结果,搜索用时 0 毫秒
1.
2.

Background

Homeodomain interacting protein kinase 2 (HIPK2) is an evolutionary conserved serine/threonine kinase whose activity is fundamental in maintaining wild-type p53 function, thereby controlling the destiny of cells when exposed to DNA damaging agents. We recently reported an altered conformational state of p53 in tissues from patients with Alzheimer''s Disease (AD) that led to an impaired and dysfunctional response to stressors.

Methodology/Principal Findings

Here we examined the molecular mechanisms underlying the impairment of p53 activity in two cellular models, HEK-293 cells overexpressing the amyloid precursor protein and fibroblasts from AD patients, starting from recent findings showing that p53 conformation may be regulated by HIPK2. We demonstrated that beta-amyloid 1–40 induces HIPK2 degradation and alters HIPK2 binding activity to DNA, in turn regulating the p53 conformational state and vulnerability to a noxious stimulus. Expression of HIPK2 was analysed by western blot experiments, whereas HIPK2 DNA binding was examined by chromatin immunoprecipitation analysis. In particular, we evaluated the recruitment of HIPK2 onto some target promoters, including hypoxia inducible factor-1α and metallothionein 2A.

Conclusions/Significance

These results support the existence of a novel amyloid-based pathogenetic mechanism in AD potentially leading to the survival of injured dysfunctional cells.  相似文献   
3.
The internal tandem duplication (ITD) of the juxtamembrane region of the FLT3 receptor has been associated with increased reactive oxygen species (ROS) generation in acute myeloid leukemia (AML). How this elevated level of ROS contributes to the leukemic phenotype, however, remains poorly understood. In this work we show that ROS in the FLT3-ITD expressing AML cell line MV4-11 is reduced by treatment with PKC412, an inhibitor of FLT3, DPI, a flavoprotein inhibitor, and VAS2870, a Nox specific inhibitor, suggesting that ROS production is both FLT3 and NADPH oxidase dependent. The majority of these ROS co-localize to the endoplasmic reticulum (ER), as determined with the H(2)O(2)-specific aryl-boronate dye Peroxyorange 1, which also corresponds to co-localization of p22phox. Moreover, knocking down p22phox dramatically reduces H(2)O(2) after 24 hours in the ER, without affecting mitochondrial ROS. Significantly, the FLT3 inhibitor PKC412 reduces H(2)O(2) in FLT3-ITD expressing cell lines (MV4-11, MOLM-13) through reduction of p22phox over 24 hours. Reduced p22phox is achieved by proteasomal degradation and is prevented upon GSK3-β inhibition. Knockdown of p22phox resulted in reduced STAT5 signalling and reduced Pim-1 levels in the cells after 24 hours. Thus, we have shown that FLT3 driven H(2)O(2) production in AML cells is mediated by p22phox and is critical for STAT5 signalling.  相似文献   
4.
Avian diversity in the Neotropics has been traditionally attributed to the effect of vicariant forces promoting speciation in allopatry. Recent studies have shown that phylogeographical patterns shared among codistributed species cannot be explained by a single vicariant event, as species responses to a common barrier depend on the biological attributes of each taxon. The open vegetation corridor (OVC) isolates Amazonia and the Andean forests from the Atlantic Forest, creating a notorious pattern of avian taxa that are disjunctly codistributed in these forests. Here, we studied and compared the evolutionary histories of Ramphotrigon megacephalum and Pipraeidea melanonota, two passerines with allopatric populations east and west of the OVC that represent different subspecies. These species differ in their biological attributes: R. megacephalum is a sedentary, forest specialist mostly confined to bamboo understorey, whereas P. melanonota is a seasonal migrant and generalist species that ranges in a variety of closed and semi‐open environments. We performed genetic and genomic analyses, complemented with the study of coloration and behavioural differentiation, to assess population divergence across the OVC. We found that the evolutionary histories of both R. megacephalum and P. melanonota have been shaped by this environmental barrier. However, these species responded in different and asynchronous manners to the establishment of the OVC and to past connections between the currently isolated South American forests, which can be mostly explained by their distinct ecologies and dispersal abilities. Our results support the fact that the biological attributes of species can make their evolutionary histories idiosyncratic.  相似文献   
5.
Histone modifications play an important role in regulating chromatin stability and gene expression, but to date, investigating them remains challenging. In order to obtain peptides suitable for MS‐based analysis, chemical derivatization of N‐terminus and lysine residues by propionic anhydride is commonly performed. Several side reactions (methyl‐esterification, amidation, solvolysis, overpropionylation, and missed propionylation) during propionylation protocols have been described, yet their relative abundances remain vague. Because methyl‐esterification could interfere with correct interpretation of the modification pattern, it is essential to take measures to avoid it. Here we present in‐depth quantitative analyses of methyl‐esterification and the other side reactions in a standard propionylation protocol containing methanol, and when replacing methanol with isopropanol or acetonitrile. We show that the use of alternative solvents can eliminate methyl‐esterification and that even though other side reactions are not prevented, their contribution can be kept relatively small. We also show that replacing methanol can be of importance also in other proteomics methods, such as mixed cation exchange, using methanol under acidic conditions.  相似文献   
6.
The inherent toxicity of many metal compounds, together with their widespread environmental distribution, raises concerns of potential health hazards. Little is known about the impact of these important environmental toxicants on adult stem/progenitor cells, necessary for tissue homeostasis and repair. We recently reported that autophagy is implicated in the response of hematopoietic stem/progenitor cells to toxic concentrations of hexavalent chromium (Cr[VI]) and cadmium (Cd), two well known carcinogenic heavy metal cations. Autophagy may lead to cell death if carried out too extensively, but also acts as a survival pathway in cells under stress. In stem/progenitor cells, an autophagic phenotype could mitigate metal-induced toxicity, contributing to the conservation of tissue renewal capability. Given the key role of toxic damage to adult stem/progenitor cells in cancer, it is necessary to investigate whether autophagic responses modulate the carcinogenic potential of exposure to heavy metals during stem/progenitor cell differentiation.  相似文献   
7.
A carbohydrate binding module, CBM4-2, derived from the xylanase (Xyn 10A) of Rhodothermus marinus has been used as a scaffold for molecular diversification. Its binding specificity has been evolved to recognise a quite different target, a human monoclonal IgG4. In order to understand the basis for this drastic change in specificity we have further investigated the target recognition of the IgG4-specific CBMs. Firstly, we defined that the structure target recognised by the selected CBM-variants was the protein and not the carbohydrates attached to the glycoprotein. We also identified key residues involved in the new specificity and/or responsible for the swap in specificity, from xylan to human IgG4. Specific changes present in all these CBMs included mutations not introduced in the design of the library from which the specific clones were selected. Reversion of such mutations led to a complete loss of binding to the target molecule, suggesting that they are critical for the recognition of human IgG4. Together with the mutations introduced at will, they had transformed the CBM scaffold into a protein binder. We have thus shown that the scaffold of CBM4-2 is able to harbour molecular recognition for either carbohydrate or protein structures.  相似文献   
8.
9.
HMGB1, a non-histone nuclear factor, acts extracellularly as a mediator of delayed endotoxin lethality, which raises the question of how a nuclear protein can reach the extracellular space. We show that activation of monocytes results in the redistribution of HMGB1 from the nucleus to cytoplasmic organelles, which display ultrastructural features of endolysosomes. HMGB1 secretion is induced by stimuli triggering lysosome exocytosis. The early mediator of inflammation interleukin (IL)-1beta is also secreted by monocytes through a non-classical pathway involving exocytosis of secretory lysosomes. However, in keeping with their respective role of early and late inflammatory factors, IL-1beta and HMGB1 respond at different times to different stimuli: IL-1beta secretion is induced earlier by ATP, autocrinally released by monocytes soon after activation; HMGB1 secretion is triggered by lysophosphatidylcholine, generated later in the inflammation site. Thus, in monocytes, non-classical secretion can occur through vescicle compartments that are at least partially distinct.  相似文献   
10.
2′-O-(2-Methoxyethyl)-5-(3-aminoprop-1-ynyl)-uridine phosphoramidite (MEPU) has been synthesized from d-ribose and 5-iodouracil and incorporated into triplex-forming oligonucleotides (TFOs) by automated solid-phase oligonucleotide synthesis. The TFOs gave very high triplex stability with their target duplexes as measured by ultraviolet/fluorescence melting and DNase I footprinting. The incorporation of MEPU into TFOs renders them resistant to degradation by serum nucleases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号