首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   18篇
  2021年   1篇
  2019年   1篇
  2015年   6篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
In previous work we found cytoplasmic dynein to be a complex of two catalytic heavy chains and at least seven co-purifying polypeptides of unknown function. The most prominent of these is a 74-kD electrophoretic species which can be resolved as two to three bands by SDS-PAGE. We have now selected a series of overlapping rat brain cDNAs encoding the 74-kD species. The deduced sequence of a full-length cDNA predicts a 72,753 D polypeptide which includes the amino acid sequences of nine peptides determined by NH2-terminal microsequencing. PCR performed on first strand rat brain cDNA together with the sequence of a partially matching tryptic peptide indicated the existence of at least three isoforms of the 74-kD cytoplasmic dynein subunit. Comparison with known sequences revealed that the carboxyl-terminal half of the polypeptide is 26.4% identical and 47.7% similar to the product of the Chlamydomonas ODA6 gene, a 70-kD intermediate chain of flagellar outer arm dynein. Immunoblot analysis with a monoclonal antibody to the 74-kD species indicated a widespread tissue distribution, as expected for a cytoplasmic dynein subunit. Nonetheless, the antibody recognized a 67-kD species in ram sperm flagella and pig tracheal cilia, supporting the existence of distinct but related cytoplasmic and axonemal polypeptides in mammals. In view of evidence for a role for the ODA6 gene product in anchoring flagellar dynein to the A subfiber microtubule in the axoneme, we predict an analogous role for the 74-kD polypeptide, perhaps in mediating the interaction of cytoplasmic dynein with membranous organelles and kinetochores.  相似文献   
2.
3.
The Ran GTPase regulates nuclear import and export by controlling the assembly state of transport complexes. This involves the direct action of RanGTP, which is generated in the nucleus by the chromatin‐associated nucleotide exchange factor, RCC1. Ran interactions with RCC1 contribute to formation of a nuclear:cytoplasmic (N:C) Ran protein gradient in interphase cells. In previous work, we showed that the Ran protein gradient is disrupted in fibroblasts from Hutchinson–Gilford progeria syndrome (HGPS) patients. The Ran gradient disruption in these cells is caused by nuclear membrane association of a mutant form of Lamin A, which induces a global reduction in heterochromatin marked with Histone H3K9me3 and Histone H3K27me3. Here, we have tested the hypothesis that heterochromatin controls the Ran gradient. Chemical inhibition and depletion of the histone methyltransferases (HMTs) G9a and GLP in normal human fibroblasts reduced heterochromatin levels and caused disruption of the Ran gradient, comparable to that observed previously in HGPS fibroblasts. HMT inhibition caused a defect in nuclear localization of TPR, a high molecular weight protein that, owing to its large size, displays a Ran‐dependent import defect in HGPS. We reasoned that pathways dependent on nuclear import of large proteins might be compromised in HGPS. We found that nuclear import of ATM requires the Ran gradient, and disruption of the Ran gradient in HGPS causes a defect in generating nuclear γ‐H2AX in response to ionizing radiation. Our data suggest a lamina–chromatin–Ran axis is important for nuclear transport regulation and contributes to the DNA damage response.  相似文献   
4.
5.
Active transport of macromolecules between the nucleus and cytoplasm requires signals for import and export and their recognition by shuttling receptors. Each class of macromolecule is thought to have a distinct receptor that mediates the transport reaction. Assembly and disassembly reactions of receptor-substrate complexes are coordinated by Ran, a GTP-binding protein whose nucleotide state is regulated catalytically by effector proteins. Ran function is modulated in a noncatalytic fashion by NTF2, a protein that mediates nuclear import of Ran-GDP. Here we characterize a novel component of the Ran system that is 26% identical to NTF2, which based on its function we refer to as NTF2-related export protein 1 (NXT1). In contrast to NTF2, NXT1 preferentially binds Ran-GTP, and it colocalizes with the nuclear pore complex (NPC) in mammalian cells. These properties, together with the fact that NXT1 shuttles between the nucleus and the cytoplasm, suggest an active role in nuclear transport. Indeed, NXT1 stimulates nuclear protein export of the NES-containing protein PKI in vitro. The export function of NXT1 is blocked by the addition of leptomycin B, a compound that selectively inhibits the NES receptor Crm1. Thus, NXT1 regulates the Crm1-dependent export pathway through its direct interaction with Ran-GTP.  相似文献   
6.
Receptor tyrosine kinase regulation of phospholipase C-epsilon (PLC-epsilon), which is under the control of Ras-like and Rho GTPases, was studied with HEK-293 cells endogenously expressing PLC-coupled epidermal growth factor (EGF) receptors. PLC and Ca(2+) signaling by the EGF receptor, which activated both PLC-gamma1 and PLC-epsilon, was specifically suppressed by inactivation of Ras-related GTPases with clostridial toxins and expression of dominant-negative Rap2B. EGF induced rapid and sustained GTP loading of Rap2B, binding of Rap2B to PLC-epsilon, and Rap2B-dependent translocation of PLC-epsilon to the plasma membrane. GTP loading of Rap2B by EGF was inhibited by chelation of intracellular Ca(2+) and expression of lipase-inactive PLC-gamma1 but not of PLC-epsilon. Expression of RasGRP3, a Ca(2+)/diacylglycerol-regulated guanine nucleotide exchange factor for Ras-like GTPases, but not expression of various other exchange factors enhanced GTP loading of Rap2B and PLC/Ca(2+) signaling by the EGF receptor. EGF induced tyrosine phosphorylation of RasGRP3, but not RasGRP1, apparently caused by c-Src; inhibition of c-Src interfered with EGF-induced Rap2B activation and PLC stimulation. Collectively, these data suggest that the EGF receptor triggers activation of Rap2B via PLC-gamma1 activation and tyrosine phosphorylation of RasGRP3 by c-Src, finally resulting in stimulation of PLC-epsilon.  相似文献   
7.
Here we report that mutations within the DNA-binding domain of AR, shown previously to inhibit nuclear export to the cytoplasm, cause an androgen-dependent defect in intranuclear trafficking of AR. Mutation of two conserved phenylalanines within the DNA recognition helix (F582, 583A) results in androgen-dependent arrest of AR in multiple subnuclear foci. A point mutation in one of the conserved phenylalanines (DeltaF582, F582Y) is known to cause androgen insensitivity syndrome (AIS). Both AIS mutants (DeltaF582, F582Y) and the export mutant (F582, 583A) displayed androgen-dependent arrest in foci, and all three mutants promoted androgen-dependent accumulation of the histone acetyl transferase CREB binding protein (CBP) in the foci. The foci correspond to a subnuclear compartment that is highly enriched for the steroid receptor coactivator glucocorticoid receptor-interacting protein (GRIP)-1. Agonist-bound wild-type AR induces the redistribution of GRIP-1 from foci to the nucleoplasm. This likely reflects a direct interaction between these proteins because mutation of a conserved residue within the major coactivator binding site on AR (K720A) inhibits AR-dependent dissociation of GRIP-1 from foci. GRIP-1 also remains foci-associated in the presence of agonist-bound F582, 583A, DeltaF582, or F582Y forms of AR. Two-dimensional phospho-peptide mapping and analysis with a phospho-specific antibody revealed that mutant forms of AR that arrest in the subnuclear foci are hypophosphorylated at Ser81, a site that normally undergoes androgen-dependent phosphorylation. Our working model is that the subnuclear foci are sites where AR undergoes ligand-dependent engagement with GRIP-1 and CBP, a recruitment step that occurs before Ser81 phosphorylation and association with promoters of target genes.  相似文献   
8.
Ca2+-dependent nuclear export mediated by calreticulin   总被引:2,自引:0,他引:2       下载免费PDF全文
We have characterized a pathway for nuclear export of the glucocorticoid receptor (GR) in mammalian cells. This pathway involves the Ca2+ -binding protein calreticulin (CRT), which directly contacts the DNA binding domain (DBD) of GR and facilitates its delivery from the nucleus to the cytoplasm. In the present study, we investigated the role of Ca2+ in CRT-dependent export of GR. We found that removal of Ca2+ from CRT inhibits its capacity to stimulate the nuclear export of GR in digitonin-permeabilized cells and that the inhibition is due to the failure of Ca2+-free CRT to bind the DBD. These effects are reversible, since DBD binding and nuclear export can be restored by Ca2+ addition. Depletion of intracellular Ca2+ inhibits GR export in intact cells under conditions that do not inhibit other nuclear transport pathways, suggesting that there is a Ca2+ requirement for GR export in vivo. We also found that the Ran GTPase is not required for GR export. These data show that the nuclear export pathway used by steroid hormone receptors such as GR is distinct from the Crm1 pathway. We suggest that signaling events that increase Ca2+ could positively regulate CRT and inhibit GR function through nuclear export.  相似文献   
9.
Ran is a Ras-related GTPase that is essential for the transport of protein and RNA between the nucleus and the cytoplasm. Proteins that regulate the GTPase cycle and subcellular distribution of Ran include the cytoplasmic GTPase-activating protein (RanGAP) and its co-factors (RanBP1, RanBP2), the nuclear guanine nucleotide exchange factor (RanGEF), and the Ran import receptor (NTF2). The recent identification of the Saccharomyces cerevisiae protein Mog1p as a suppressor of temperature-sensitive Ran mutations suggests that additional regulatory proteins remain to be characterized. Here, we describe the identification and biochemical characterization of murine Mog1, which, like its yeast orthologue, is a nuclear protein that binds specifically to RanGTP. We show that Mog1 stimulates the release of GTP from Ran, indicating that Mog1 functions as a guanine nucleotide release factor in vitro. Following GTP release, Mog1 remains bound to nucleotide-free Ran in a conformation that prevents rebinding of the guanine nucleotide. These properties distinguish Mog1 from the well characterized RanGEF and suggest an unanticipated mechanism for modulating nuclear levels of RanGTP.  相似文献   
10.
Iliac crest bone graft harvesting techniques: a comparison   总被引:3,自引:0,他引:3  
This study was undertaken to compare the morbidity of traditional iliac bone graft harvesting techniques for grafting alveolar clefts to minimally invasive techniques. Fifty-five age-matched patients, ages 6.5 to 16 years (mean, 11.2 years), 22 girls and 33 boys, were divided into three groups. The traditional bone window open harvesting technique served as the control group. Two different minimally invasive techniques, one that used a bone grinder and another that used a trephine, for bone harvesting were compared with the control. Both invasive techniques were statistically superior, p < 0.05, in terms of total time pain medication was necessary (mean of 12.0 hours for bone grinder, 17.6 hours for trephine, 26.0 hours for control), operative time for bone harvest (mean of 11 minutes for bone grinder and trephine, 20 minute for control), and mean incision length (2 cm for bone grinder and trephine, 5 cm for control). Patients exposed to the minimally invasive techniques had fewer complications, a trend toward earlier ambulation, and shorter hospital stays when compared with the bone grinder technique. The patients exposed to the bone grinder demonstrated earlier ambulation and fewer requirements for analgesia when compared with the trephine technique, although these results did not reach statistical significance. The trephine technique was useful when maxillary osteotomies were combined with alveolar bone grafting, because it provided structural bone grafts and cancellous bone. On the basis of these findings, the bone grinder is the preferred technique for harvesting alveolar bone grafts when no structural support is required. These authors no longer use the traditional bone window open harvesting technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号