首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   5篇
  2023年   1篇
  2022年   5篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   8篇
  2014年   4篇
  2013年   7篇
  2012年   9篇
  2011年   9篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   4篇
  1995年   1篇
  1990年   1篇
  1985年   1篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有110条查询结果,搜索用时 31 毫秒
1.
Rice seedlings accumulate stainable amounts of the 104 and 90 kDa polypeptides in response to high temperature stress. We have purified and raised highly specific polyclonal antisera against both of these polypeptides. In western blotting experiments, we find that these proteins are accumulated to different extents in rice seedlings subjected to salinity (NaCl), water stress, low-temperature stress and exogenous abscisic acid application. These proteins also accumulated when rice seedlings grown in pots under natural conditions were subjected to water stress by withholding watering. Seedlings of Triticum aestivum, Sorghum bicolor, Pisum sativum, Zea mays, Brassica juncea and mycelium of Neurospora crassa showed accumulation of the immunological homologues of both the 104 and the 90 kDa polypeptides, in response to high-temperature stress. We have earlier shown that shoots of rice seedlings exposed to heat shock accumulate a 110 kDa polypeptide which is an immunological homologue of the yeast HSP 104 (Singla and Grover, Plant Mol Biol 22: 1177–1180, 1993). Employing anti-rice HSP 104 antibodies and anti-yeast HSP 104 antibodies together, we provide evidence that rice HSP 104 is different from the earlier characterized rice HSP 110.  相似文献   
2.
BackgroundThe two-component signaling (TCS) system is an important signal transduction machinery in prokaryotes and eukaryotes, excluding animals, that uses a protein phosphorylation mechanism for signal transmission.ConclusionProkaryotes have a primitive type of TCS machinery, which mainly comprises a membrane-bound sensory histidine kinase (HK) and its cognate cytoplasmic response regulator (RR). Hence, it is sometimes referred to as two-step phosphorelay (TSP). Eukaryotes have more sophisticated signaling machinery, with an extra component - a histidine-containing phosphotransfer (HPT) protein that shuttles between HK and RR to communicate signal baggage. As a result, the TSP has evolved from a two-step phosphorelay (His–Asp) in simple prokaryotes to a multi-step phosphorelay (MSP) cascade (His–Asp–His–Asp) in complex eukaryotic organisms, such as plants, to mediate the signaling network. This molecular evolution is also reflected in the form of considerable structural modifications in the domain architecture of the individual components of the TCS system. In this review, we present TCS system''s evolutionary journey from the primitive TSP to advanced MSP type across the genera. This information will be highly useful in designing the future strategies of crop improvement based on the individual members of the TCS machinery.  相似文献   
3.
Abstract

Fungal infections cause several metabolic changes to the plants, which can affect its physiology and survival in various ways. In the present study, we have analysed various phenolic compounds and activity of oxidative enzymes in healthy and Sclerotium rolfsii-infected groundnut genotypes. Increased phenolics content and higher activity of oxidative enzymes was observed in the tolerant genotype (CS 19, GG 16) followed by susceptible genotype (GG 20, TG 37A). Among the phenolic compounds tested, chlorogenic acid content has increased greatly in leaf, stem and root of infected tolerant genotypes compared to the respective controls. In vitro growth of S. rolfsii showed significant inhibition at concentrations 500 and 1000 µg/mL of phenolic compounds in the radial growth inhibition assay. These results have strongly suggested that, higher accumulation of chlorogenic acid could be an important factor in imparting resistance and protecting groundnut against S. rolfsii infection in tolerant genotypes.  相似文献   
4.
We report on a PCR-RFLP procedure for recognising of a silent point mutation of ITGB2 CD18 subunit gene in cattle. Polymorphism screening was performed in a Polish Black-and-White cattle population (n=210). The genotype and allele frequencies were established in the sires and cows. Further research is needed to explain the possible applications of the CD18 silent point mutation as a potential molecular marker for high milk productivity.  相似文献   
5.
6.
7.
Cyclophilins, which bind to immunosuppressant cyclosporin A (CsA), are ubiquitous proteins and constitute a multigene family in higher organisms. Several members of this family are reported to catalyze cis-trans isomerisation of the peptidyl-prolyl bond, which is a rate limiting step in protein folding. The physiological role of these proteins in plants, with few exceptions, is still a matter of speculation. Although Arabidopsis genome is predicted to contain 35 cyclophilin genes, biochemical characterization, imperative for understanding their cellular function(s), has been carried only for few of the members. The present study reports the biochemical characterization of an Arabidopsis cyclophilin, AtCyp19-3, which demonstrated that this protein is enzymatically active and possesses peptidyl-prolyl cis-trans isomerase (PPIase) activity that is specifically inhibited by CsA with an inhibition constant (Ki) of 18.75 nM. The PPIase activity of AtCyp19-3 was also sensitive to Cu2+, which covalently reacts with the sulfhydryl groups, implying redox regulation. Further, using calmodulin (CaM) gel overlay assays it was demonstrated that in vitro interaction of AtCyp19-3 with CaM is Ca2+-dependent, and CaM-binding domain is localized to 35–70 amino acid residues in the N-terminus. Bimolecular fluorescence complementation assays showed that AtCyp19-3 interacts with CaM in vivo also, thus, validating the in vitro observations. However, the PPIase activity of the Arabidopsis cyclophilin was not affected by CaM. The implications of these findings are discussed in the context of Ca2+ signaling and cyclophilin activity in Arabidopsis.  相似文献   
8.
9.
The nucleotide sequence data of molecular markers 18S rRNA, RUBISCO spacer, and cox2‐3 intergenic spacer were integrated to infer the phylogeny of Gracilaria species, collected from the western coast of India, reducing the possibility of misidentification and providing greater phylogenetic resolution. A phylogenetic tree was constructed using cox2‐3 and RUBISCO spacer sequences, exhibiting the same clustering but differing slightly from that of the rRNA‐based phylogenetic tree. The phylogeny inferred from the combined data set confers an analogous pattern of clustering, compared with those of trees constructed from individual data sets. The combined data set resulted in a phylogeny with better resolution, which supported the clade with higher consistency index, retention index, and bootstrap values. It was observed that Gracilaria foliifera (Forssk.) Børgesen is closer to G. corticata (J. Agardh) J. Agardh varieties, while G. salicornia (C. Agardh) E. Y. Dawson and G. fergusonii J. Agardh both originated from the same clade. The position of G. textorii (Suringar) De Toni faltered and toppled between G. salicornia and G. dura (C. Agardh) J. Agardh; however, G. gracilis (Stackh.) M. Steentoft, L. M. Irvine et W. F. Farnham was evidently distant from the rest of the species.  相似文献   
10.
The two-component system (TCS), which works on the principle of histidine-aspartate phosphorelay signaling, is known to play an important role in diverse physiological processes in lower organisms and has recently emerged as an important signaling system in plants. Employing the tools of bioinformatics, we have characterized TCS signaling candidate genes in the genome of Oryza sativa L. subsp. japonica. We present a complete overview of TCS gene families in O. sativa, including gene structures, conserved motifs, chromosome locations, and phylogeny. Our analysis indicates a total of 51 genes encoding 73 putative TCS proteins. Fourteen genes encode 22 putative histidine kinases with a conserved histidine and other typical histidine kinase signature sequences, five phosphotransfer genes encoding seven phosphotransfer proteins, and 32 response regulator genes encoding 44 proteins. The variations seen between gene and protein numbers are assumed to result from alternative splicing. These putative proteins have high homology with TCS members that have been shown experimentally to participate in several important physiological phenomena in plants, such as ethylene and cytokinin signaling and phytochrome-mediated responses to light. We conclude that the overall architecture of the TCS machinery in O. sativa and Arabidopsis thaliana is similar, and our analysis provides insights into the conservation and divergence of this important signaling machinery in higher plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号