首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   9篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2019年   8篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   8篇
  2014年   9篇
  2013年   8篇
  2012年   8篇
  2011年   8篇
  2010年   10篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   7篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   3篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
1.
The bioavailability of iron from foods is ultimately determined by interactions between iron and other components in the digestive milieu. Perhaps the most important factor is the concentration of Fe2+ during transit through the duodenum. During in vitro simulations of human digestion it is possible to probe the concentration of Fe2+, the rate of Fe2+ formation, and total iron concentration using ferrous chromogens. It is crucial, of course, that the chromogen not interfere with the redox reactions occurring during digestion. Accordingly, ferrozine was examined with regard to its ability to reduce complexes Fe3+, alter rates of Fe3+ production, detect Fe2+ present in the digestive mixture and differentiate the effects of chelating and reducing agents in the mobilization of iron from pinto beans. The chromogen was found to be free from apparent artefacts and to be a sensitive and reproducible probe of the state of iron in digestive mixtures.  相似文献   
2.
The influence of several commercial albumin preparations on the ferroxidase activity of ceruloplasmin (ferroxidase I, ferrous: O2 oxidoreductase EC 1.16.3.1) at pH 6.0 was determined using ferric-transferrin formation. The ability of several albumin preparations to inhibit the ferroxidase activity of ceruloplasmin differs more than three hundredfold. It appears to depend on the method of isolation of albumin rather than the source of albumin, suggesting the existence of an inhibitor bound to albumin. The inhibitor was isolated after chromatography of an albumin preparation on Sephadex G-200. It was identified as citrate by thin layer chromatography and by comparison of the spectrum of the sulfide-pentabromoacetone derivative. Albumin preparations, even with bound citrate, do not exert a significant inhibitory effect at pH 7.4.  相似文献   
3.
The effect of time delay in specific growth rate () on the periodic operation of bioreactors with input multiplicities is theoretically analyzed for productivity improvement. A periodic rectangular pulse is applied either in feed substrate concentration (Sf) or in dilution rate (D). Periodic operation under feed substrate concentration cycling gives improvement in productivity at lower value of ¯Sf of the two steady-state multiplicities of Sf only when the time delay in is larger. Whereas the larger value of ¯Sf gives improvement in average productivity for all values of time delay. Dilution rate (D) cycling gives an improvement in average productivity particularly for larger time delay in . This improvement in average productivity is obtained only at smaller value of dilution rate out of the two steady-state input multiplicities of D.List of Symbols D 1/h dilution rate - F memory function - g dummy variable - Ki g/l substrate inhibition constant - Km g/l substrate saturation constant - P g/l product concentration - Pm g/l product saturation constant - Q g/(hl) product cell produced per unit time - S g/l substrate concentration - Sf g/l feed substrate concentration - Sf,p g/l feed substrate concentration during fraction of a period - X g/l biomass concentration - YX/S g/g cell mass yield - w variable either S or Z - Z g/l weighted average of substrate concentration Greek Letters 1/h time delay parameter - 1 , 2 product yield parameters, g/g and 1/h - pulse width expressed as a fraction of a period - 1/h specific growth rate - m 1/h maximum specific growth rate - h period of oscillation - – average value  相似文献   
4.
DNA repair mutants of Rhodobacter sphaeroides.   总被引:1,自引:1,他引:0       下载免费PDF全文
The genome of the photosynthetic eubacterium Rhodobacter sphaeroides 2.4.1 comprises two chromosomes and five endogenous plasmids and has a 65% G+C base composition. Because of these characteristics of genome architecture, as well as the physiological advantages that allow this organism to live in sunlight when in an anaerobic environment, the sensitivity of R. sphaeroides to UV radiation was compared with that of the more extensively studied bacterium Escherichia coli. R. sphaeroides was found to be more resistant, being killed at about 60% of the rate of E. coli. To begin to analyze the basis for this increased resistance, a derivative of R. sphaeroides, strain 2.4.1 delta S, which lacks the 42-kb plasmid, was mutagenized with a derivative of Tn5, and the transposon insertion mutants were screened for increased UV sensitivity (UVs). Eight UVs strains were isolated, and the insertion sites were determined by contour-clamped homogeneous electric field pulsed-field gel electrophoresis. These mapped to at least five different locations in chromosome I. Preliminary analysis suggested that these mutants were deficient in the repair of DNA damage. This was confirmed for three loci by DNA sequence analysis, which showed the insertions to be within genes homologous to uvrA, uvrB, and uvrC, the subunits of the nuclease responsible for excising UV damage.  相似文献   
5.
6.
The kinetics of decay in absorbance at 610 nm in the reaction of cysteine with ceruloplasmin was biphasic under anaerobic conditions. Admission of oxygen to the bleached ceruloplasmin restored the blue color to about 75 % of the original value. However, under aerobic or anaerobic conditions an initial bleaching corresponded to a 25 % decrease in blue color. This change was irreversible and remained after removal of excess cysteine from the reaction mixture by dialysis. There was no correlation between transient and steady-state kinetic parameters. Circular dichroism measurements showed a characteristic reduction in the negative band at 450 nm, which is specific for type 1b copper. Isolation and further studies on cysteine-modified ceruloplasmin with a lower A610/A280 ratio showed < 10% reduction in enzyme activity toward p-phenylenediamine and o-dianisidine. Evidence is also presented that ceruloplasmin catalyzes the oxidation of cysteine with a one-electron reduction of oxygen and the formation of superoxide ion, which is then converted to H2O2 by ceruloplasmin. The effect of superoxide dismutase and catalase also confirms the presence of superoxide and H2O2. In sum, these data show that a permanent reduction of type 1b copper occurred when cysteine was used as a substrate. We conclude that there is a single electron transfer from cysteine directly to oxygen using one specific copper of ceruloplasmin, type 1b.  相似文献   
7.
The dietary antagonism between copper and molybdate salts prompted a study of the inhibition of copper enzymes by thiomolybdate (TM). TM strongly inhibited the oxidase activity of five copper oxidase with I50% values in the 1-5 microM range. The mechanism of the TM effect on the copper oxidase, ceruloplasmin (Cp) (E.C. 1.16.3.1), was studied in detail. In Vmax vs. E plots, TM gave parallel data suggesting irreversibility but a large number of TM molecules per Cp were required. The inhibition of Cp by TM could not be reversed by dialysis. Isolation of TM-inhibited Cp on Sephadex G-10 did not yield any active Cp molecules. Cu(II) did not restore any inhibited oxidase activity. Gel electrophoresis supported the covalent binding of Cp by TM without any extensive change in protein structure. EPR results confirmed that Cu(II) is reduced to Cu(I) after reaction with TM. However, the Mo(VI) in MoS4(2-) did not change in oxidation number. Analysis of the TM-Cp compound accounted for all six Cu atoms as found in native Cp. The data suggest the covalent binding of sulfide to Cp copper. TM also inhibited the activity of ascorbate oxidase, cytochrome oxidase, superoxide dismutase, and tyrosinase. However, no inhibition of carbonic anhydrase, a zinc enzyme, was observed at 1 mM TM.  相似文献   
8.
EGTA (ethanedioxybis(ethylamine)tetra-acetic acid) induced a release of Ca2+ from mitochondria isolated from both rat liver and rat heart that was inhibited by Ruthenium Red. The concentration of Ruthenium Red giving half-maximal inhibition was about 350 pmol/mg of protein, a value approximately 7 times greater than that giving half-maximal inhibition of the initial rate of Ca2+ transport. The EGTA-induced release of Ca2+ was temperature-dependent and was inhibited by the local anaesthetic, nupercaine.Pi, acetate, and tributyltin in the presence of Cl?, inhibited the Ruthenium Red-sensitive Ca2+ release induced by EGTA, whereas these agents enhanced the Ruthenium Red-insensitive release of Ca2+ induced by acetoacetate in liver and heart mitochondria and by Na+ in heart mitochondria.  相似文献   
9.
1. Addition of N-ethylmaleimide to rat liver mitochondria respiring with succinate as substrate decreases both the initial rate of Ca(2+) transport and the ability of mitochondria to retain Ca(2+). As a result, Ca(2+) begins to leave the mitochondria soon after it has entered. Half-maximal effects occur at an N-ethylmaleimide concentration of about 100nmol/mg of protein. 2. The efflux of Ca(2+) induced by N-ethylmaleimide is not prevented by Mg(2+) or by Ruthenium Red at concentrations known to prevent Ca(2+) efflux when exogenous phosphate also is present. Swelling of mitochondria does not accompany N-ethylmaleimide-induced Ca(2+) efflux. 3. Addition of Ca(2+) to rat liver mitochondria in the presence of N-ethylmaleimide produces an immediate decrease in DeltaE (membrane potential), which decreases further to only a slight extent over the next 8min. Concomitant with this is an immediate increase and then levelling off of the -59DeltapH (transmembrane pH gradient). 4. Preincubation of rat liver mitochondria with p-chloromercuribenzenesulphonate, which by contrast with N-ethylmaleimide is unable to penetrate the inner mitochondrial membrane, also prevents Ca(2+) retention. The DeltaE and -59DeltapH respond to Ca(2+) addition in a manner similar to that which occurs when N-ethylmaleimide is present. Subsequent addition of mercaptoethanol produces an immediate increase in both DeltaE and -59DeltapH. At the same time Ca(2+) is rapidly accumulated by the organelles. 5. The above data are interpreted as indicating that under the conditions of Ca(2+) efflux seen here, the mitochondria retain their functional integrity. This contrasts with the uncoupling effect of Ca(2+) seen in the presence of P(i), which generally leads to a loss of mitochondrial integrity. We suggest that a unique mechanism of Ca(2+) cycling is able to take place when mitochondria have been treated with N-ethylmaleimide.  相似文献   
10.
Several features of the catalytic oxidation of cysteine by ceruloplasmin and nonenzymic Cu(II) at pH 7 have been compared. The oxidation of cysteine by ceruloplasmin has several properties in common with the Cu(II) catalyzed oxidation of cysteine: pH maxima, thiol specificity, lack of inhibition by anions, and high sensitivity to inhibition by copper complexing reagents. These two catalysts differed in their molecular activity, in their ability to oxidize penicillamine and thioglycolate, and in that H2O2 was produced as a primary product only during Cu(II) oxidation. The oxidation of cysteine by ceruloplasmin was compared also with the ceruloplasmin catalyzed oxidation of o-dianisidine, a classical pH 5.5 substrate. The mechanism of the oxidation of cysteine by ceruloplasmin at pH 7 differed from that of o-dianisidine oxidation because the latter substrate was inhibited by anions but not by copper complexing agents. Spectral and other data suggest that during the ceruloplasmin reaction with cysteine there is a one electron transfer from cysteine to ceruloplasmin resulting in the specific reduction of type lb Cu(II).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号