首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   3篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1996年   1篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Bardet–Biedl syndrome (BBS) is a human genetic disorder with a spectrum of symptoms caused by primary cilium dysfunction. The disease is caused by mutations in one of at least 17 identified genes, of which seven encode subunits of the BBSome, a protein complex required for specific trafficking events to and from the primary cilium. The molecular mechanisms associated with BBSome function remain to be fully elucidated. Here, we generated null and complemented mutants of the BBSome subunit BBS1 in the protozoan parasite, Leishmania. In the absence of BBS1, extracellular parasites have no apparent defects in growth, flagellum assembly, motility or differentiation in vitro but there is accumulation of vacuole‐like structures close to the flagellar pocket. Infectivity of these parasites for macrophages in vitro is reduced compared with wild‐type controls but the null parasites retain the ability to differentiate to the intracellular amastigote stage. However, infectivity of BBS1 null parasites is severely compromised in a BALB/c mouse footpad model. We hypothesize that the absence of BBS1 in Leishmania leads to defects in specific trafficking events that affect parasite persistence in the host. This is the first report of an association between the BBSome complex and pathogen infectivity.  相似文献   
2.
The Tomato spotted wilt virus (TSWV) encoded NSm movement protein facilitates cell-to-cell spread of the viral genome through structurally modified plasmodesmata. NSm has been utilized as bait in yeast two-hybrid interaction trap screenings. As a result, a protein of unknown function, called At-4/1, was isolated from an Arabidopsis thaliana GAL4 activation domain-tagged cDNA library. Using polyclonal antibodies against bacterially expressed At-4/1, Western blot analysis of protein extracts isolated from different plant species as well as genome database screenings showed that homologues of At-4/1 seemed to be encoded by many vascular plants. For subcellular localization studies, At-4/1 was fused to green fluorescent protein, and corresponding expression vectors were used in particle bombardment and agroinfiltration assays. Confocal laser scannings revealed that At-4/1 assembled in punctate spots at the cell periphery. The protein accumulated intracellularly in a polarized fashion, appearing in only one-half of a bombarded epidermal cell, and, moreover, moved from cell to cell, forming twin-structured bodies seemingly located at both orifices of the plasmodesmatal pore. In coexpression studies, At-4/1 colocalized with a plant virus movement protein TGBp3 known to reside in endoplasmic reticulum-derived membrane structures located in close vicinity to plasmodesmata. Thus, At-4/1 belongs to a new family of plant proteins capable of directed intra- and intercellular trafficking.  相似文献   
3.
RNase-based self-incompatibility: puzzled by pollen S   总被引:1,自引:0,他引:1  
Newbigin E  Paape T  Kohn JR 《The Plant cell》2008,20(9):2286-2292
Many plants have a genetically determined self-incompatibility system in which the rejection of self pollen grains is controlled by alleles of an S locus. A common feature of these S loci is that separate pollen- and style-expressed genes (pollen S and style S, respectively) determine S allele identity. The long-held view has been that pollen S and style S must be a coevolving gene pair in order for allelic recognition to be maintained as new S alleles arise. In at least three plant families, the Solanaceae, Rosaceae, and Plantaginaceae, the style S gene has long been known to encode an extracellular ribonuclease called the S-RNase. Pollen S in these families has more recently been identified and encodes an F-box protein known as either SLF or SFB. In this perspective, we describe the puzzling evolutionary relationship that exists between the SLF/SFB and S-RNase genes and show that in most cases cognate pairs of genes are not coevolving in the expected manner. Because some pollen S genes appear to have arisen much more recently than their style S cognates, we conclude that either some pollen S genes have been falsely identified or that there is a major problem with our understanding of how the S locus evolves.  相似文献   
4.
In vitro models of macrophage growth, differentiation, and function are needed to facilitate the study of their biology as important immune facilitator cells and as frequent targets of bacterial and viral infection. A simple method for the selective expansion and continuous culture of mouse macrophages from primary explant cultures of mouse embryonic tissue is described. Culture in Dulbecco modified Eagle medium (DMEM) low-glucose (1 g/L) formulation (DMEM/L) inhibited fibroblast growth. In contrast, macrophages continued to proliferate in the presence of DMEM/L when in contact with the fibroblasts. Alternating growth in high-glucose DMEM with DMEM/L produced a 1.16- to 2.1-fold increase (depending on mouse strain) in the percentage of macrophages within the cell culture in comparison with culturing in DMEM with high glucose exclusively. Macrophage yields of over 1 million cells/T12.5 flask were achieved by passages 3-4, and, thereafter, declined over the next 5-10 passages. The peak percentage of macrophages within a culture varied depending on the strain of mouse (C57BL/6, CD-1, and CF-1 and two knockout C57BL/6 strains deficient in either interleukin-6 [IL-6] or granulocyte colony stimulating factor [GCSF]). The GCSF (-/-)-derived cultures had the lowest peak macrophage content (30%) and CD-1 the highest content (64.9%). The IL-6 (-/-) and CD-1 cultures appeared to spontaneously transform to create cell lines (IL6MAC and CD1MAC, respectively) that were composed of 50-75% macrophages. The macrophages were phagocytic and were positive for CD14, acetylated low-density lipoprotein receptors, and F4-80 antigen. Light and electron microscopy showed that the cultured macrophages had in vivo-like morphological features, and they could be plated to high purity by differential attachment to petri dishes in serum-free medium.  相似文献   
5.
We have refined a medium-throughput assay to screen hit compounds for activity against N-myristoylation in intracellular amastigotes of Leishmania donovani. Using clinically-relevant stages of wild type parasites and an Alamar blue-based detection method, parasite survival following drug treatment of infected macrophages is monitored after macrophage lysis and transformation of freed amastigotes into replicative extracellular promastigotes. The latter transformation step is essential to amplify the signal for determination of parasite burden, a factor dependent on equivalent proliferation rate between samples. Validation of the assay has been achieved using the anti-leishmanial gold standard drugs, amphotericin B and miltefosine, with EC50 values correlating well with published values. This assay has been used, in parallel with enzyme activity data and direct assay on isolated extracellular amastigotes, to test lead-like and hit-like inhibitors of Leishmania N-myristoyl transferase (NMT). These were derived both from validated in vivo inhibitors of Trypanosoma brucei NMT and a recent high-throughput screen against L. donovani NMT. Despite being a potent inhibitor of L. donovani NMT, the activity of the lead T. brucei NMT inhibitor (DDD85646) against L. donovani amastigotes is relatively poor. Encouragingly, analogues of DDD85646 show improved translation of enzyme to cellular activity. In testing the high-throughput L. donovani hits, we observed macrophage cytotoxicity with compounds from two of the four NMT-selective series identified, while all four series displayed low enzyme to cellular translation, also seen here with the T. brucei NMT inhibitors. Improvements in potency and physicochemical properties will be required to deliver attractive lead-like Leishmania NMT inhibitors.  相似文献   
6.
Investigating the proteome of intracellular pathogens is often hampered by inadequate methodologies to purify the pathogen free of host cell material. This has also precluded direct proteome analysis of the intracellular, amastigote form of Leishmania spp., protozoan parasites that cause a spectrum of diseases that affect some 12 million patients worldwide. Here a method is presented that combines classic, isopycnic density centrifugation with fluorescent particle sorting for purification by exploiting transgenic, fluorescent parasites to allow direct proteome analysis of the purified organisms. By this approach the proteome of intracellular Leishmania mexicana amastigotes was compared with that of extracellular promastigotes that are transmitted by insect vectors. In total, 509 different proteins were identified by mass spectrometry and database search. This number corresponds to approximately 6% of gene products predicted from the reference genome of Leishmania major. Intracellular amastigotes synthesized significantly more proteins with basic pI and showed a greater abundance of enzymes of fatty acid catabolism, which may reflect their living in acidic habitats and metabolic adaptation to nutrient availability, respectively. Bioinformatics analyses of the genes corresponding to the protein data sets produced clear evidence for skewed codon usage and translational bias in these organisms. Moreover analysis of the subset of genes whose products were more abundant in amastigotes revealed characteristic sequence motifs in 3'-untranslated regions that have been linked to translational control elements. This suggests that proteome data sets may be used to identify regulatory elements in mRNAs. Last but not least, at 6% coverage the proteome identified all vaccine antigens tested to date. Thus, the present data set provides a valuable resource for selection of candidate vaccine antigens.  相似文献   
7.
The self‐incompatible species Arabidopsis halleri is a close relative of the self‐compatible model plant Arabidopsis thaliana. The broad European and Asian distribution and heavy metal hyperaccumulation ability make A. halleri a useful model for ecological genomics studies. We used long‐insert mate‐pair libraries to improve the genome assembly of the A. halleri ssp. gemmifera Tada mine genotype (W302) collected from a site with high contamination by heavy metals in Japan. After five rounds of forced selfing, heterozygosity was reduced to 0.04%, which facilitated subsequent genome assembly. Our assembly now covers 196 Mb or 78% of the estimated genome size and achieved scaffold N50 length of 712 kb. To validate assembly and annotation, we used synteny of A. halleri Tada mine with a previously published high‐quality reference assembly of a closely related species, Arabidopsis lyrata. Further validation of the assembly quality comes from synteny and phylogenetic analysis of the HEAVY METAL ATPASE4 (HMA4) and METAL TOLERANCE PROTEIN1 (MTP1) regions using published sequences from European A. halleri for comparison. Three tandemly duplicated copies of HMA4, key gene involved in cadmium and zinc hyperaccumulation, were assembled on a single scaffold. The assembly will enhance the genomewide studies of A. halleri as well as the allopolyploid Arabidopsis kamchatica derived from A. lyrata and A. halleri.  相似文献   
8.
Mastitis, the most consequential disease in dairy cattle, costs the US dairy industry billions of dollars annually. To test the feasibility of protecting animals through genetic engineering, transgenic cows secreting lysostaphin at concentrations ranging from 0.9 to 14 micrograms/ml [corrected] in their milk were produced. In vitro assays demonstrated the milk's ability to kill Staphylococcus aureus. Intramammary infusions of S. aureus were administered to three transgenic and ten nontransgenic cows. Increases in milk somatic cells, elevated body temperatures and induced acute phase proteins, each indicative of infection, were observed in all of the nontransgenic cows but in none of the transgenic animals. Protection against S. aureus mastitis appears to be achievable with as little as 3 micrograms/ml [corrected] of lysostaphin in milk. Our results indicate that genetic engineering can provide a viable tool for enhancing resistance to disease and improve the well-being of livestock.  相似文献   
9.
The FAS-associated death domain (FADD) protein is an adapter/signaling molecule that has been shown to function in human cells to promote apoptosis and to inhibit NF-kappaB activation. Because of the critical role that apoptosis and NF-kappaB play in a variety of disease states, we mapped the bovine FADD gene, sequenced bovine FADD cDNA, and characterized its expression in endothelial cells (EC). Sequencing of bovine FADD revealed approximately 65 and 58% amino acid sequence identity to its human and murine homologues, respectively. Bovine FADD was mapped to chromosome 29 by radiation hybrid mapping. In addition, the functionality of bovine FADD was studied. Expression of a bovine FADD dominant-negative construct blocked bacterial lipopolysaccharide (LPS)- and TNF-alpha-induced apoptosis in bovine EC consistent with previous studies of human FADD. In contrast to human FADD, elevated expression of bovine FADD had no effect on LPS- or TNF-alpha-induced upregulation of NF-kappaB-dependent gene products as assayed by E-selectin expression. Thus, while the role of FADD in mediating apoptosis is conserved across species, its role in regulating NF-kappaB-dependent gene expression is not.  相似文献   
10.
A reinvestigation of the thioacetylation method of protein sequencing (G. A. Mross and R. F. Doolittle (1971) Fed. Proc. 30, 1241. G. A. Mross and R. F. Doolittle (1977) in Advanced Methods in Protein Sequence Determination (Needleman, S. B., Ed.), pp. 1-20, Springer, Berlin) has revealed that 2-methyl-5(4H)-thiazolones, prepared by trifluoroacetic acid-catalyzed cleavage of the N-terminal amino acid from a N-thioacetylated polypeptide, were found to react instantaneously with one equivalent of carboxylic acid chloride, sulfonic acid chloride, or chloroformate to yield stable derivatives suitable for identification by high-performance liquid chromatography. NMR studies confirmed the products of the derivatization to be the corresponding 5-O-substituted-2-methylthiazoles. 2-Methyl-5(4H)-thiazolones were derivatized by reaction with 3,5-dinitrobenzoyl chloride, 4-nitrophenylchloroformate, 4-nitrobenzenesulfonyl chloride, or 4-N-dimethylaminoazobenzene-4'-sulfonyl chloride (dabsyl chloride) in dichloromethane in the presence of triethylamine. Analytical standards were prepared by 1,3-dicyclohexylcarbodiimide-catalyzed cyclization of N-thioacetyl amino acids to 2-methyl-5(4H)-thiazolones followed by derivatization with 4-nitrobenzenesulfonyl chloride. Stable crystalline 2-methyl-5-O-(4'-nitrobenzenesulfonyl)thiazole standards were obtained for 15 amino acids. Cysteine, serine, and threonine proved recalcitrant toward derivatization with 4-nitrobenzenesulfonyl chloride due to the dehydration of their respective thiazolones. Alkylated cysteine derivatives including S-beta-(4-pyridylethyl)cysteine and S-ethylcysteine were derivatized without difficulty. Cyclization of N-thioacetylproline afforded a mesoionic compound which resisted derivatization, but could be detected directly. A preliminary high-performance liquid chromatographic separation was developed and the feasibility of this approach to protein sequencing demonstrated by solid-phase degradation of the oxidized insulin B chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号