首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  2023年   1篇
  2022年   1篇
  2020年   3篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
Ecosystems - Carbon (C) fluxes among different components of plant growth are important to forest ecosystem C cycling and are strongly influenced by species composition and resource availability....  相似文献   
2.
Land‐use/cover change (LUCC) is an important driver of environmental change, occurring at the same time as, and often interacting with, global climate change. Reforestation and deforestation have been critical aspects of LUCC over the past two centuries and are widely studied for their potential to perturb the global carbon cycle. More recently, there has been keen interest in understanding the extent to which reforestation affects terrestrial energy cycling and thus surface temperature directly by altering surface physical properties (e.g., albedo and emissivity) and land–atmosphere energy exchange. The impacts of reforestation on land surface temperature and their mechanisms are relatively well understood in tropical and boreal climates, but the effects of reforestation on warming and/or cooling in temperate zones are less certain. This study is designed to elucidate the biophysical mechanisms that link land cover and surface temperature in temperate ecosystems. To achieve this goal, we used data from six paired eddy‐covariance towers over co‐located forests and grasslands in the temperate eastern United States, where radiation components, latent and sensible heat fluxes, and meteorological conditions were measured. The results show that, at the annual time scale, the surface of the forests is 1–2°C cooler than grasslands, indicating a substantial cooling effect of reforestation. The enhanced latent and sensible heat fluxes of forests have an average cooling effect of ?2.5°C, which offsets the net warming effect (+1.5°C) of albedo warming (+2.3°C) and emissivity cooling effect (?0.8°C) associated with surface properties. Additional daytime cooling over forests is driven by local feedbacks to incoming radiation. We further show that the forest cooling effect is most pronounced when land surface temperature is higher, often exceeding ?5°C. Our results contribute important observational evidence that reforestation in the temperate zone offers opportunities for local climate mitigation and adaptation.  相似文献   
3.
Ecosystems - A major functional division in ectomycorrhizal fungi is between taxa with hydrophobic ectomycorrhizae (strong proteolytic capabilities, deep nitrogen (N) acquisition, and extensive...  相似文献   
4.
5.
X chromosome inactivation (XCI) is an essential epigenetic process that ensures X‐linked gene dosage equilibrium between sexes in mammals. XCI is dynamically regulated during development in a manner that is intimately linked to differentiation. Numerous studies, which we review here, have explored the dynamics of X inactivation and reactivation in the context of development, differentiation and diseases, and the phenotypic and molecular link between the inactive status, and the cellular context. Here, we also assess whether XCI is a uniform mechanism in mammals by analyzing epigenetic signatures of the inactive X (Xi) in different species and cellular contexts. It appears that the timing of XCI and the epigenetic signature of the inactive X greatly vary between species. Surprisingly, even within a given species, various Xi configurations are found across cellular states. We discuss possible mechanisms underlying these variations, and how they might influence the fate of the Xi.  相似文献   
6.
7.
Six position‐specific 13C‐labelled isotopomers of glucose were supplied to the ectomycorrhizal fungi Suillus pungens and Tricholoma flavovirens. From the resulting distribution of 13C among fungal PLFAs, the overall order and contribution of each glucose atom to fatty acid 13C enrichment was: C6 (~31%) > C5 (~25%) > C1 (~18%) > C2 (~18%) > C3 (~8%) > C4 (~1%). These data were used to parameterize a metabolic model of the relative fluxes from glucose degradation to lipid synthesis. Our data revealed that a higher amount of carbon is directed to glycolysis than to the oxidative pentose phosphate pathway (60% and 40% respectively) and that a significant part flows through these pathways more than once (73%) due to the reversibility of some glycolysis reactions. Surprisingly, 95% of carbon cycled through glyoxylate prior to incorporation into lipids, possibly to consume the excess of acetyl‐CoA produced during fatty acid turnover. Our approach provides a rigorous framework for analysing lipid biosynthesis in fungi. In addition, this approach could ultimately improve the interpretation of isotopic patterns at natural abundance in field studies.  相似文献   
8.
9.
The nutritional modes of genera in Hygrophoraceae (Basidiomycota: Agaricales), apart from the ectomycorrhizal Hygrophorus and lichen-forming taxa, are uncertain. New δ(15)N and δ(13)C values were obtained from 15 taxa under Hygrophoraceae collected in central Massachusetts and combined with isotopic datasets from five prior studies including a further 12 species using a data standardization method to allow cross-site comparison. Based on these data, we inferred the probable nutritional modes for species of Hygrophorus, Hygrocybe, Humidicutis, Cuphophyllus and Gliophorus. A phylogeny of Hygrophoraceae was constructed by maximum likelihood analysis of nuclear ribosomal 28S and 5.8S sequences and standardized δ(15)N and δ(13)C values were used for parsimony optimization on this phylogeny. Our results supported a mode of biotrophy in Hygrocybe, Humidicutis, Cuphophyllus and Gliophorus quantitatively unlike that in more than 450 other fungal taxa sampled in the present and prior studies. Parsimony optimization of stable isotope data suggests moderate conservation of nutritional strategies in Hygrophoraceae and a single switch to a predominantly ectomycorrhizal life strategy in the lineage leading to Hygrophorus. We conclude that Hygrophoraceae of previously unknown nutritional status are unlikely to be saprotrophs and are probably in symbiosis with bryophytes or other understory plants.  相似文献   
10.
Controls of nitrogen isotope patterns in soil profiles   总被引:5,自引:0,他引:5  
To determine the dominant processes controlling nitrogen (N) dynamics in soils and increase insights into soil N cycling from nitrogen isotope (δ15N) data, patterns of 15N enrichment in soil profiles were compiled from studies on tropical, temperate, and boreal systems. The maximum 15N enrichment between litter and deeper soil layers varied strongly with mycorrhizal fungal association, averaging 9.6 ± 0.4‰ in ectomycorrhizal systems and 4.6 ± 0.5‰ in arbuscular mycorrhizal systems. The 15N enrichment varied little with mean annual temperature, precipitation, or nitrification rates. One main factor controlling 15N in soil profiles, fractionation against 15N during N transfer by mycorrhizal fungi to host plants, leads to 15N-depleted plant litter at the soil surface and 15N-enriched nitrogen of fungal origin at depth. The preferential preservation of 15N-enriched compounds during decomposition and stabilization is a second important factor. A third mechanism, N loss during nitrification and denitrification, may account for large 15N enrichments with depth in less N-limited forests and may account for soil profiles where maximum δ15N is at intermediate depths. Mixing among soil horizons should also decrease differences among soil horizons. We suggest that dynamic models of isotope distributions within soil profiles that can incorporate multiple processes could provide additional information about the history of nitrogen movements and transformations at a site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号