首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   5篇
  2021年   2篇
  2019年   3篇
  2018年   1篇
  2016年   2篇
  2015年   5篇
  2014年   6篇
  2013年   6篇
  2012年   7篇
  2011年   13篇
  2010年   9篇
  2009年   6篇
  2008年   7篇
  2007年   7篇
  2006年   12篇
  2005年   5篇
  2004年   10篇
  2003年   11篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
排序方式: 共有157条查询结果,搜索用时 31 毫秒
1.
We have cloned and analyzed the sugar-beet mitochondrial gene for cytochrome oxidase subunit II (coxII). The sugar-beet and its deduced amino acid sequence were compared to its homologouscoxII gene sequences from both monocot and dicot plants. It was found to be highly conserved (89–95%) compared to homologue in other plant species. The 780 bp coding sequence of the sugar beetcoxII gene is interrupted at position 383 by a 1463 bp intron. This intron contains an additional 107 bp sequence that is not found in any of the plantcoxII genes studied thus far. The structure of the intron suggests that a large intron existed in an ancestralcoxII gene before monocots and dicots diverged in evolution. Three CGG codons in the sugar-beetcoxII coding sequence align with conserved tryptophan residues in the homologous gene of other species, suggesting that RNA editing takes place also in sugar-beet mitochondria. In 13 out of 24 codons ofcoxII mRNA that were found to be edited in four other plants, the sugar-beet gene already utilizes the edited codons. This phenomenon may indicate that the mitochondrial genome in sugar-beet is phylogenetically more archaic relative to these plants. An additional sequence of 279 bp that is identical to the first exon ofcoxII was identified in the mtDNA of the sugar-beet. This pseudo-gene is transcribed and its existence in the mitochondrial genome is unexplained.  相似文献   
2.
The activity of transglutaminase (TG) was examined in the rat superior cervical ganglion (SCG) during development and after postganglionic nerve crush. During postnatal development the enzyme activity is increased by sevenfold in parallel to protein content of the ganglion and reaches adult levels by day 35 after birth. The endogenous activity (enzyme activity assayed in the absence of the exogenous substrate) during development is transiently elevated with a peak at day 21 postnatal. In the adult ganglion the enzyme specific activity is evenly distributed in all subcellular compartments, but most of it is contained in the cytosol. Within the first hour after axotomy TG activity is rapidly and transiently elevated. The peak value, 80% above control levels, is attained by 30 min postoperative. At this time the activity is increased in all subcellular fractions, but the endogenous activity is selectively increased in the fraction containing nuclei. The enhanced TG activity after axotomy can be prevented by topical treatments with verapamil, an inhibitor of voltage-dependent calcium fluxes across excitable membranes, or with the calcium chelator EGTA. The results show that intracellular TG activity is present in the SCG and that it increases with postnatal growth of the ganglion. After axotomy the enzyme activity is rapidly and transiently increased in the ganglion and this elevation critically depends on calcium fluxes.  相似文献   
3.
A kinetic study was made of the relationship between respiration rate, sugar content and ATP levels, in fresh and aged potato tubers stored at 4°. The ATP content in tubers rose rapidly immediately after the chilling stress, while respiration rate decreased below the initial rate and sugar accumulation was not detected. After 4 days of storage, the ATP level declined and the sugars started to accumulate. The typical increase in respiration rate that usually follows chilling stress, appeared only in fresh tubers (at about the 6th day of storage). In dinitrophenol-treated tubers, the ATP level remained below the initial level and sugar accumulation was blocked completely. The evidence presented suggests that ATP elevation is not generated by the respiration burst.  相似文献   
4.
Catechol oxidase was extracted from an acetone powder prepared from green olive. The enzyme was purified 240-fold by ammonium sulphate fractionation followed by ion exchange chromatography and gel filtration. The enzyme was characterized by substrate specificity and response to inhibitors. Between 7 and 9 bands having catechol oxidase activity could be detected by gel electrophoresis and electrofocusing. The purified enzyme had an estimated MW of 42 000. The enzyme was strongly inhibited by diethyldithiocarbamate. Inhibition by chloride was strongly dependent on pH. The enzyme did not oxidise monophenols.  相似文献   
5.
6.
Mutations in the p53 tumor suppressor protein are highly frequent in tumors and often endow cells with tumorigenic capacities. We sought to examine a possible role for mutant p53 in the cross-talk between cancer cells and their surrounding stroma, which is a crucial factor affecting tumor outcome. Here we present a novel model which enables individual monitoring of the response of cancer cells and stromal cells (fibroblasts) to co-culturing. We found that fibroblasts elicit the interferon beta (IFNβ) pathway when in contact with cancer cells, thereby inhibiting their migration. Mutant p53 in the tumor was able to alleviate this response via SOCS1 mediated inhibition of STAT1 phosphorylation. IFNβ on the other hand, reduced mutant p53 RNA levels by restricting its RNA stabilizer, WIG1. These data underscore mutant p53 oncogenic properties in the context of the tumor microenvironment and suggest that mutant p53 positive cancer patients might benefit from IFNβ treatment.  相似文献   
7.
Cuticular fatty acids (CFA) are important constituents of the arthropod exoskeleton, serving as structural and defense components, and participating in intra-species communication. Here we describe for the first time a comparative analysis of the CFA profiles of three tick species of the genus Rhipicephalus: R. annulatus, R. bursa and R. sanguineus. CFA profiles were determined for R. bursa and R. sanguineus grown both on rabbit or calf, and for R. annulatus grown on calf. CFA composition was compared for each species before and after ethanol treatment, for different hosts of each species, and between the different species. Our data suggest that adsorption of the host’s fatty acids changes the apparent CFA composition. Ethanol treatment efficiently removed the unbound fatty acids from the ticks and revealed the actual composition. Comparison between ticks grown on rabbit versus calf showed significant difference in the relative abundance of fatty acids C14 and 9,12-C18:2 for R. bursa, and a difference in the relative abundance of C14 for R. sanguineus. Comparison of the CFA between the three species revealed significant differences in the abundance of fatty acids C16, 9,12-C18:2, 9-C18:1, C18 and C20. Our results show that while the host had a minor effect on CFA composition within each species, significant differences were observed in the CFA profiles of different species. We suggest that CFA profiles may be used to distinguish between related species. CFA analysis can also be used in studies of communication and defense mechanisms in ticks and other arthropods.  相似文献   
8.
The 3 ends of chloroplast mRNAs are produced by the processing of longer precursors. The 3 ends of most plastid mRNAs are located at, or several nucleotides downstream of, stem-loop structures, which act as 3-end-processing signals and RNA stability elements. In chloroplasts of the green alga Chlamydomonas reinhardtii, 3-end maturation of atpB mRNA involves endonucleolytic cleavage of the pre-mRNA at an AU-rich site located about 10 nucleotides downstream of the stem-loop structure. This cleavage is followed by exonucleolytic resection to generate the mature 3 end. In order to define critical nucleotides of the endonucleolytic cleavage site, we mutated its sequence. Incubation of synthetic atpB pre-RNAs containing these mutations in a chloroplast protein extract resulted in the accumulation of 3-end-processed products. However, in two cases where the AU-rich sequence of this site was replaced with a GC-rich one, the 3 end of the stable processing product differed from that of the wild-type product. To examine whether these mutations affected atpB mRNA processing or accumulation in vivo, the endogenous 3 UTR was replaced with mutated sequences by biolistic transformation of Chlamydomonas chloroplasts. Analysis of the resulting strains revealed that the accumulation of atpB mRNA was approximately equal to that of wild-type cells, and that a wild-type atpB 3 end was generated. These results imply that Chlamydomonas atpB 3 processing parallels the situation with other endonucleases such as Escherichia coli RNAse E, where specific sequences are required for correct in vitro processing, but in vivo these mutations can be overcome.  相似文献   
9.
The mechanism of RNA degradation in Escherichia coli involves endonucleolytic cleavage, polyadenylation of the cleavage product by poly(A) polymerase, and exonucleolytic degradation by the exoribonucleases, polynucleotide phosphorylase (PNPase) and RNase II. The poly(A) tails are homogenous, containing only adenosines in most of the growth conditions. In the chloroplast, however, the same enzyme, PNPase, polyadenylates and degrades the RNA molecule; there is no equivalent for the E. coli poly(A) polymerase enzyme. Because cyanobacteria is a prokaryote believed to be related to the evolutionary ancestor of the chloroplast, we asked whether the molecular mechanism of RNA polyadenylation in the Synechocystis PCC6803 cyanobacteria is similar to that in E. coli or the chloroplast. We found that RNA polyadenylation in Synechocystis is similar to that in the chloroplast but different from E. coli. No poly(A) polymerase enzyme exists, and polyadenylation is performed by PNPase, resulting in heterogeneous poly(A)-rich tails. These heterogeneous tails were found in the amino acid coding region, the 5' and 3' untranslated regions of mRNAs, as well as in rRNA and the single intron located at the tRNA(fmet). Furthermore, unlike E. coli, the inactivation of PNPase or RNase II genes caused lethality. Together, our results show that the RNA polyadenylation and degradation mechanisms in cyanobacteria and chloroplast are very similar to each other but different from E. coli.  相似文献   
10.
Cyclic changes of plasma spermine concentrations in women   总被引:1,自引:0,他引:1  
Based on previous studies which suggest that blood polyamines fluctuate during the menstrual cycle, the present study was set to determine whether plasma concentrations of the polyamine spermine show menstrual cycle-associated changes and if so, how these changes relate to phasic variations in other female hormones. Blood samples were collected from a group of 9 healthy women of various ages at 5 defined periods during their menstrual cycle including 1 woman on oral contraceptives. Spermine concentrations were determined in plasma acid extracts by reversed-phase high performance liquid chromatography method. Plasma estradiol, LH and FSH were measured by microparticle enzyme immunoassay using an automatic analyzer. Spermine concentrations, 104.4 +/- 12.2 nmol/ml at 1-3 day of the cycle, were increased transiently with a peak (263.8 +/- 22.1 nmol/ml) at 8-10 day and declined to 85.4 +/- 29.8 nmol/ml by 21-23 day of the cycle. The peak spermine concentrations coincided with the first increase in plasma estrogen levels. The individual variations in the temporal profile of spermine concentrations were of similar magnitude as individual differences in other female hormones. We conclude that: a) Plasma spermine concentrations undergo distinct cyclic alterations during the menstrual cycle with peak concentrations coinciding with the first estradiol increase, and b) Peak plasma spermine concentrations occur during the follicular phase, just prior to ovulation, during the period of rapid endometrial growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号