首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2011年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   3篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1984年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Azadirachtin, a material isolated from Azadirachta indica A. Juss, was applied to various stages of red cotton bugs (Dysdercus koenigii F.). The phytochemical evoked various specific and nonspecific effects during the course of development. Prolonged development, wing deformities unplasticisation of wing lobes, development of wingless adults and larval mortality were the characteristic features.
Azadirachtine d'Azadirachta indica I: Interaction avec de développement de Dysdercus koenigii
Résumé L'azadirachtine, isolat de Azadirachta indica A. Juss a été utilisée (par traitement du substrat ou par dépôt sur l'insecte) sur un hétérométabole, Dysdercus koenigii F. Cette substance phytochimique provoque divers effets, spécifiques ou non, pendant le développement.Les modifications caractéristiques sont: un développement prolongé, de déformations alaires, une absence de plastification des bourgeons alaires, une production d'adultes sans ailes et une mortalité nymphale.De tels résultats suggèrent des études complémentaires pour mettre en évidence une hormone d'éclosion chez D. koenigii avec laquelle interférerait l'azadirachtine.
  相似文献   
2.
The efficacy of neem (1500 ppm azadirachtin (AI)), Delfin WG, a biological insecticide based on selected strain of Bacillus thuringiensis Berliner (Bt) subspecies kurstaki, and Cry1Ac protein, either individually or in combination, were examined against first to fourth instar Helicoverpa armigera (Hübner) larvae. Using an oral administration method, various growth inhibitory concentrations (EC) and lethal concentrations (LC) were determined for each bioagent. Combinations of sublethal concentrations of Bt spray formulation with azadirachtin at EC50 or EC95 levels not only enhanced the toxicity, but also reduced the duration of action when used in a mixture. The LC20 and LC50 values for Cry1Ac toxin were 0.06 and 0.22 microg ml-1, respectively. Bt-azadirachtin combinations of LC50+EC20 and LC50+EC50 result in 100% mortality. The mortality also was significant in LC20+EC20 and LC20+EC50 mixtures. These studies imply that the combined action is not synergistic but complimentary, with azadirachtin particularly facilitating the action of Bt. The Bt spray-azadirachtin combination is more economical than combinations that involve isolating the toxic protein, as the Bt spray formulations can be combined in a spray mixture with neem. These combinations may be useful for controlling bollworm populations that have acquired resistance to Bt as they may not survive the effect of mixture. Azadirachtin may be useful as a means of reducing the endotoxin concentrations in a mixture, to promote increased economic savings and further reduce the probability of resistance development to either insect control agent.  相似文献   
3.
The excretion, retention, and tissue distribution of [3H]-dihydroazadirachtin was investigated in the variegated cutworm, Peridroma saucia (Noctuidae). The candidate compound was rapidly cleared from the hemolymph following either oral exposure or topical administration, with maximum concentrations at 6 h post-treatment and peak appearance of label in the frass at 12 h. However, approximately 45 and 55% of the labelled material was retained in the body at 72 h in respective treatments. Major depots for retained radioactivity were the gut (24% of the administered oral dose, 18.8% of the administered topical dose) and integument (12.2% of the oral dose and 30.7% of the topical dose). The variation in tissue distribution of dihydroazadirachtin with respect to the mode of application is discussed. A single polar metabolite fraction was obtained from the frass of dihydroazadirachtin-fed larvae. The physiological and behavioral effects of 22,23-dihydroazadirachtin and azadirachtin are quantitatively similar. © 1994 Wiley-Liss, Inc.  相似文献   
4.
Eight essential oil compounds were evaluated against the maize borer, Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae), to determine their influence on oviposition and feeding behavior. Thymol was the most active compound against C. partellus when evaluated as an oviposition deterrent (ODI50 = 1.36 mg ml?1), an ovicide (LC50 = 2.06 mg ml?1), or a feeding deterrent (FI50 = 141.8 μg cm?2) in laboratory experiments. The results corroborated with greenhouse experiments, in which egg laying on maize plants was inhibited significantly when the treatment was 15 times the concentration used in the laboratory experiments. However, there was neither any correlation between oviposition deterrence and feeding inhibition, nor between oviposition deterrence and ovicidal action. Apparently, toxicity per se or ovicidal action does not play any role in choice of oviposition in C. partellus. This was more obvious when the efficacy of compounds was compared in greenhouse experiments where ODI values and number of eggs laid on the treated leaves did not differ significantly in choice and no‐choice situations. Apparently, toxicity plays an important role in predicting host plant choice, but behavioral response in terms of oviposition preference is independent of toxic action, particularly for non‐host toxins. Thus, the same compounds affecting oviposition behavior on the one hand and having ovicidal or feeding deterrent properties on the other could be useful in field situations in any area‐wide integrated pest management model.  相似文献   
5.
The bioefficacy of aglaroxin A from Aglaia elaeagnoidea (syn. A. roxburghiana) was assessed using the gram pod borer, Helicoverpa armigera (Hübner), and Asian armyworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). The compound exhibited strong growth inhibition in a diet bioassay, with 0.67 p.p.m: and 0.78 p.p.m. of the compound reducing growth by 50% in H. armigera and S. litura neonate larvae, respectively, whereas a growth inhibition of 95% was achieved at 2.36 p.p.m: and 2.41 p.p.m., respectively; this was comparable to azadirachtin treatments used as a control. Aglaroxin A was toxic to various stadia. Nutritional analysis revealed the antifeedant properties of the compound; however, nutritional indices indicated that the reduction in growth of the larvae was not entirely due to starvation, but partly due to the toxic effects of the ingested compound. This was further confirmed in topical treatments. When relative growth rate was plotted against relative consumption rate, the growth efficiency of larvae fed on a diet containing aglaroxin A was significantly less than that of control larvae. These results further indicate that aglaroxin A acts as both antifeedant and chronic toxin. Morphologically deformed or partially pupated insects were obtained after 5th instar larvae were treated with aglaroxin A. Such developmental inhibition during ecdysis was not due to depletion of the moulting hormone, as treated larvae, when provided with exogenous 20‐hydroxyecdysone, did not show any recovery from the effect. However, it is obvious from the present findings that aglaroxin A activity does not absolutely follow the pattern of azadirachtin or the more related compound rocaglamide known in lepidopterans.  相似文献   
6.
Leaf disc choice test bioassay demonstrated that formulated neem seed extracts were highly deterrent and growth regulatory to rose aphid,Microsiphum rosae (L.) and Chrysanthemum aphid,Macrosiphoniella sanbornii (Gillete). Effective concentrations to produce 50% feeding deterrence was 0.80 and 0.84% respectively for 2nd instar nymphs irrespective of bioassay duration. The disruption of aphid feeding was related to the presence of azadirachtin concentration in the extract. The toxicity on contact from the leaf surface or via topical application due to azadirachtin was significantly different and topical treatment was at least 7 times more effective for both species. Thus growth regulatory effects of azadirachtin were influenced by the host plant and the stage of treatment. Field evaluation with formulated neem extracts revealed the effect to be more of growth regulatory nature thereby showing that azadirachtin is a physiological toxin for aphid species. Neem seed extracts reduced the population of aphid on respective host plants significantly, EC50 values being 0.88 and 0.96% forM. rosae andM. sanbornii respectively.  相似文献   
7.
Phytochemicals and Insect Control: An Antifeedant Approach   总被引:1,自引:0,他引:1  
Plants based pest control agents have long been touted as alternatives to synthetic chemicals for integrated pest management. Such phytochemicals reputedly pose little threat to the environment or to human health. Bioactivity of plant-based compounds is well documented in literature and is a subject of increasing importance. An antifeedant approach for insect control has been extensively studied, at least at laboratory level, though only a handful of plant-based compounds are currently used in agriculture. The known active plant-based antifeedants belong to groups like chromenes, polyacetylenes, saponins, quassinoids, cucurbitacins, cyclopropanoid acids, phenolics, alkaloids, various types of terpenes and their derivatives etc., and each insect species may process these allomones in a thoroughly idiosyncratic way, so that the same compound may have very different fates and consequences in different species of insects, thus pointing to different mechanisms involved in antifeedant action. It can also be visualized that insect feeding deterrents may be perceived either by stimulation of specialized deterrent receptors or by distortion of the normal function of neurons, which perceive phagostimulating compounds. Some plant antifeedants influence the feeding activity through a combination of these two principal modes of action. Only a few highly active antifeedants have been looked into from a commercial point of view, which makes it impossible to systemize or to predict any molecular motifs in feeding inhibition. Structure activity relationship studies also do not point to any generalization. “Mix and Match” systems may help in developing a cocktail of feeding inhibitors that can be used in developing a customized formulation against a specific category of pests. Application of such products will be broad and will not be limited to targeted pests and to plant parts. Decreased deterrence resulting from habituation has been suggested that could pose different implications for pest management than does decreased deterrence resulting from increased tolerance to toxic substances. Genetically modified plants, which could produce the active antifeedant substances in amounts high enough to protect the plants from further herbivorous damage, could be a possibility in the future.  相似文献   
8.
Head space volatiles, including 73% di-n-propyl disulfide, were collected from freshly crushed neem seeds. This compound along with previously reported diallyl disulfide (di-2-propenyl disulfide) were toxic when applied topically or as a fumigant to Tribolium castaneum adults and 8-, 12-, and 16-d-old larvae, and Sitophilus oryzae adults. Di-n-propyl disulfide significantly decreased the growth rate and dietary utilization with moderate inhibition of food consumption in both insects. The total coefficient of deterrence for this compound ranged between 68.5 and 178.6, which suggests that it has medium to very good deterrent activity vis-à-vis the treatment concentration and instar. Di-n-propyl disulfide and diallyl disulfide presented a similar effect on efficiency of conversion of ingested food, which is reduced 3-fold; this implies that both compounds are physiological toxicants. Present studies clearly demonstrate that di-n-propyl disulfide could be a potent toxicant, fumigant, and feeding deterrent for stored grain pests, if a suitable formulation and application procedure are developed.  相似文献   
9.
Neem allelochemicals azadirachtin, salannin, nimbinene and nimbin were administered to different larval instars of the tobacco armyworm, Spodoptera litura orally in artificial diet, topically or via injection. Nutritional analyses revealed strong antifeedant and growth regulatory effects of azadirachtin which were independent of each other. While salannin and nimbinene induced concentration dependent feeding deterrence only; nimbin was inactive to the 1000 ppm level against this insect species. One of the causes of the reduced growth rate of azadirachtin treated insects was due to an increase in the costs associated with growth. This was relative to a drastic reduction in the activity of gut trypsin. Salannin and nimbinene, however, did not interfere with the trypsin activity of the gut. These results and those from nutritional studies suggest that salannin and nimbinene have no toxicity mediated effects on S. litura larvae and antifeedant activity is a result of the effects on deterrent and other chemoreceptors. The fact that azadirachtin directly or indirectly inhibits the secretion of trypsin by the enzyme-secreting cells of the gut is discussed.  相似文献   
10.
Laboratory experiments were conducted to evaluate the behavior of Helicoverpa armigera (Hübner) and Spodoptera litura (Fabricius) larvae on meridic diet with different concentrations of Bt spray formulation Delfin or isolated Cry1Ac protein or the foliage and bolls from transgenic cotton, Bollgard hybrid RCH-317 Bt. Both insect species selectively fed on nontreated diet compared with the diet treated with Delfin. While H. armigera exhibited concentration response with Cry1Ac, this protein did not affect S. litura larvae. In general Helicoverpa selected diet with low concentrations (EC20 and EC50 levels) of Cry1Ac compared with higher concentrations of Cry1Ac. In order to develop appropriate management strategies, a thorough understanding of the behavioral mechanisms leading to the responses of insects to the proteins in transgenic varieties is required. Thus, based on results of the insects fed individually on the leaf discs or bolls from transgenic cotton plants alone or under choice situation with meridic diet revealed that H. armigera larvae preferred meridic diet to transgenic leaves or bolls expressing Cry1Ac protein. H. armigera larvae preferred meridic diet to plant material; more than 70% larvae were seen on the meridic diet, and average larval weight gain was in the range of 121.7–130.5 mg. However, in case of S. litura the larvae showed no significant discrimination between meridic diet and the leaf discs. In fact more than 60% larvae preferred leaf discs for feeding, though Cry1Ac expression in leaf discs was in the range of 0.9–2.18 μg/g. Thus differences in behavioral response could potentially impact the level of efficacy of crop cultivars that have been genetically engineered to produce these proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号