首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2023年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   3篇
  2013年   3篇
  2012年   2篇
  2010年   1篇
  2005年   1篇
排序方式: 共有16条查询结果,搜索用时 46 毫秒
1.
Alzheimer disease (AD) is a neuronal dementia for which no treatment has been consolidated yet. Major pathologic hallmark of AD is the aggregated extracellular amyloid-β plaques in the brains of disease sufferers. Aβ-peptide is a major component of amyloid plaques and is produced from amyloid precursor protein (APP) via the proteolysis action. An aspartyl protease known as β-site amyloid precursor protein cleaving enzyme (BACE-1) is responsible for this proteolytic action. Distinctive role of BACE-1 in AD pathogenesis has made it a validated target to develop anti-Alzheimer agents. Our structure-based virtual screening method led to the synthesis of novel 3,5-bis-N-(aryl/heteroaryl) carbamoyl-4-aryl-1,4-dihydropyridine BACE-1 inhibitors (6a6p; in vitro hits). Molecular docking and DFT-based ab initio studies using B3LYP functional in association with triple-ζ basis set (TZV) proposed binding mode and binding energies of ligands in the active site of the receptor. In vitro BACE-1 inhibitory activities were determined by enzymatic fluorescence resonance energy transfer (FRET) assay. Most of the synthesized dihydropyridine scaffolds were active against BACE-1 while 6d, 6k, 6n and 6a were found to be the most potent molecules with IC50 values of 4.21, 4.27, 4.66 and 6.78 μM, respectively. Superior BACE-1 inhibitory activities were observed for dihydropyridine derivatives containing fused/nonfused thiazole containing groups, possibly attributing to the additional interactions with S2–S3 subpocket residues. Relatively reliable correlation between calculated binding energies and experimental BACE-1 inhibitory activities was achieved (R2 = 0.51). Moreover, compounds 6d, 6k, 6n and 6a exhibited relatively no calcium channel blocking activity with regard to nifedipine suggesting them as appropriate candidates for further modification(s) to BACE-1 inhibitory scaffolds.  相似文献   
2.
A series of 16 novel 1,2,4-triazine derivatives bearing hydrazone moiety (7a7p) have been designed, synthesized and evaluated for their activity to inhibit IL-1β and TNF-α production. All compounds are reported for the first time. The chemical structures of all compounds were confirmed by spectroscopic methods and elemental analyzes. Most of the synthesized compounds were proved to have potent anti-cytokine activity and low toxicity on PBMC and MCF-7 cell lines. Compounds 7f, 7k, 7l and 7j presented simultaneously good levels of inhibition of both cytokines. Moreover, compound 7l exhibited good anti-inflammatory effect in carrageenan-induced rat paw edema. The results of Western blotting demonstrated that the anti-cytokine potential of compound 7l is mainly mediated through the inhibition of p38 MAPK signaling pathway. Molecular docking was performed to position compound 7l into p38α binding site in order to explore the potential target. The information of this work might be helpful for the design and synthesis of novel scaffold toward the development of new therapeutic agent to fight against inflammatory diseases.  相似文献   
3.
4.
The plants of the genus Salvia L. are important medicinal herbs of the Lamiaceae family and some of them such as S. officinalis (sage), S. miltiorrhiza (red sage, Danshen) and S. sclarea (clary sage) have been used as medicinal plants in the folk medicine of several countries. In this review, we discuss the reports that have examined Salvia species with the aim of isolation of pure compounds with different biological activities. The phytochemical analyses of various sage plants have reported 10 monoterpenoids (110), 1 sesquiterpenoid (11), 8 labdane (1320), 15 ent-kaurane (2135), 82 abietane, rearranged abietane and tanshinone (36117), 3 icetexane (118120), 43 clerodane (121163), and 3 pimarane (164166) diterpenoids with cytotoxic and antimicrobial, antiprotozoal, antioxidant, phytotoxic and insecticide effects. The other heavier terpenoids, including 3 sesterterpenes (167169), 10 triterpenoids and β-sitosterol (170180) have been introduced as minor bioactive compounds in the sage plants. Sahandinone (107), 6,7-dehydroroyleanone, 7-α-acetoxyroyleanone (40), and tanshinone like diterpenoids have been isolated from the roots’ extracts of different Salvia species. On the other hand, several radical scavenger phenolic compounds like simple phenolics and caffeic acid derivatives (181201) including rosmarinic acid, flavonoids (202217) as well as phenolic diterpenoids, such as carnosol and carnosic acid have been isolated from the aerial parts of these plants. One pyrrole (218) and 3 antimicrobial oxylipins (219221) are among the other less detected constituents in the members of Salvias. Furthermore, sages also synthesize antifungal, antileishmanial and antimalarial phytochemicals in their roots and shoots, which are reviewed in this paper. We also examine the allelopathic phenomena and the ecologically important phytochemicals identified in different parts of the sage plants. Finally, antifeedant and insecticide phenomena, which are due to the presence of volatile monoterpenes and clerodane diterpenes in these plants, are discussed. Considering the presence of diverse biologically active phytochemicals in the sage plants, they can be suggested as suitable candidates for the formulation of valuable natural medicines.  相似文献   
5.
Co-delivery of small chemotherapeutic molecules and nucleic acid materials via targeted carriers has attracted great attention for treatment of resistant tumors and reducing adverse effects. In this study, a targeted carrier for co-delivery was prepared based on low-molecular weight polyethylenimine (LMW PEI). Paclitaxel (PTX) was covalently conjugated onto PEI via a succinate linker. The PEI conjugate was decorated with L-DOPA in order to target large neutral amino acid transporter-1 (LAT-1) that is over-expressed on various cancer cells. This PEI conjugate was complexed with human ABCB1 shRNA plasmid to down-regulate the expression of P-glycoprotein, as one of the major efflux pumps inducing resistance against chemotherapeutics. The formation of PEI conjugate enhanced the solubility of PTX and resulted in the condensation and protection of plasmid DNA in nanosized polyplexes. The results of targeted delivery into the cells demonstrated that PEI conjugate transferred the payloads to the cells over-expressing LAT-1 transporter, while the biological effects on the cells lacking the transporter was negligible. Also, shRNA-mediated down-regulation of P-gp led to the increase of toxic effects on the cells over-expressing P-gp. This study suggests a promising approach for co-delivery of small molecules and nucleic acid materials in a targeted manner for cancer therapy.  相似文献   
6.
P-glycoprotein (P-gp) is a main factor contributing to multidrug resistance. The effect of this transporter protein on limiting the effectiveness of chemotherapy has been shown by various studies. In a previous report, we synthesized some 14-dihydropyridine (DHP) derivatives as inhibitors of human P-gp. In the present study, a computational approach has been exploited to reveal the main interactions between DHPs and P-gp. In order to do this, homology modeling was performed to obtain a model of the protein. Then, molecular dynamics simulation was used to refine the constructed model of P-gp in the presence of the lipids bilayer. Model validation was performed with several tools. Finally, molecular docking followed by MD simulation of ligand–protein complex was employed to elucidate the binding mode and the dynamical changes of protein with/without DHPs bound. The results emphasized that interaction of the residues Gln912, Ser909, Arg905, Ser474, Val472 with DHPs play a crucial role in the inhibitory of these ligands and this was in a relatively good accordance with the results reported in the experimental studies.  相似文献   
7.
In this article, a new hybrid plasmonic based metal-semiconductor-metal photodetector (MSM-PD) is proposed. A subwavelength slit, the metal nanoscale gratings, and the metal pads which are extended into the absorption layer are used in a basic hybrid plasmonic structure to enhance the absorption coefficient. The finite-difference time-domain (FDTD) method is used to simulate the new structure. The absorption coefficient of the hybrid plasmonic MSM-PD becomes 42 times greater than that of the conventional plasmonic MSM-PD made of only subwavelength slit, which is known as the reference structure. This result is equivalently about 1.5 times greater than that of a recently reported structure. It is also demonstrated that the quantum efficiency of the proposed structure is 10 times more, if compared with the reference one. Moreover, considering the incident light modulation frequency, the frequency response of the hybrid plasmonic MSM-PD is improved, where the cutoff frequency is increased 22 times greater than that of the reference MSM-PD.  相似文献   
8.
The inhibition of β secretase (BACE1) is potentially important approach to treatment of Alzheimer disease (AD). A novel series of 4-bromophenyl piperazine derivatives coupled to the phenylimino-2H-chromen-3-carboxamide scaffold were investigated as BACE1 inhibitors in this study. Docking study suggested that the phenyl-imino group of the scaffold establishes favorable π–π stacking interaction with side chain of Phe108 of flap pocket. Some of the docking proposed derivatives were synthesized and evaluated for BACE1 inhibitory activity using a FRET-based assay. High BACE1 inhibitory activities were observed from derivatives containing fused heteroaromtic groups attached through the aliphatic linkage to the N4-piperazine moiety, which may be attributed to the engagement of effective interactions with S1–S′1 sub-pocket residues. Of the most potent compounds, 9e displayed an IC50 value for BACE1 of 98 nM. Some of these derivatives demonstrated good inhibitory activity on Aβ production in N2a-APPswe cells at 5 and 10 μM. These compounds might be considered as promising BACE1 inhibitory agents that could lower Aβ production in AD.  相似文献   
9.
In this work, a novel series of arylisoxazole‐phenylpiperazines were designed, synthesized, and evaluated toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Our results revealed that [5‐(2‐chlorophenyl)‐1,2‐oxazol‐3‐yl](4‐phenylpiperazin‐1‐yl)methanone ( 5c ) was the most potent AChE inhibitor with IC50 of 21.85 μm . It should be noted that most of synthesized compounds showed no BChE inhibitory activity and [5‐(2‐fluorophenyl)‐1,2‐oxazol‐3‐yl](4‐phenylpiperazin‐1‐yl)methanone ( 5a ) was the most active anti‐BChE derivative (IC50=51.66 μm ). Also, kinetic studies for the AChE and BChE inhibitory activity of compounds 5c and 5a confirmed that they have simultaneously bound to the catalytic site (CS) and peripheral anionic site (PAS) of both AChE and BChE. Furthermore, docking study of compound 5c showed desired interactions of that compound with amino acid residues located in the active and peripheral anionic sites. Compound 5c was also evaluated for its BACE1 inhibitory activity and demonstrated IC50=76.78 μm . Finally, neuroprotectivity of compound 5c on Aβ‐treated neurotoxicity in PC12 cells depicted low activity.  相似文献   
10.
A novel series of hybrid arylisoxazole‐chromenone carboxamides were designed, synthesized, and evaluated for their cholinesterase (ChE) inhibitory activity based on the modified Ellman's method. Among synthesized compounds, 5‐(3‐nitrophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide depicted the most acetylcholinesterase (AChE) inhibitory activity (IC50=1.23 μm ) and 5‐(3‐chlorophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide was found to be the most potent butyrylcholinesterase (BChE) inhibitor (IC50=9.71 μm ). 5‐(3‐Nitrophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide was further investigated for its BACE1 inhibitory activity as well as neuroprotectivity and metal chelating ability as important factors involved in onset and progress of Alzheimer's disease. It could inhibit BACE1 by 48.46 % at 50 μm . It also showed 6.4 % protection at 25 μm and satisfactory chelating ability toward Zn2+, Fe2+, and Cu2+ ions. Docking studies of 5‐(3‐nitrophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide and 5‐(3‐chlorophenyl)‐N‐{4‐[(2‐oxo‐2H‐1‐benzopyran‐7‐yl)oxy]phenyl}‐1,2‐oxazole‐3‐carboxamide confirmed desired interactions with those amino acid residues of the AChE and BChE, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号