全文获取类型
收费全文 | 479篇 |
免费 | 47篇 |
专业分类
526篇 |
出版年
2023年 | 2篇 |
2022年 | 4篇 |
2021年 | 11篇 |
2020年 | 7篇 |
2019年 | 3篇 |
2018年 | 5篇 |
2017年 | 7篇 |
2016年 | 19篇 |
2015年 | 27篇 |
2014年 | 25篇 |
2013年 | 27篇 |
2012年 | 52篇 |
2011年 | 45篇 |
2010年 | 28篇 |
2009年 | 24篇 |
2008年 | 17篇 |
2007年 | 22篇 |
2006年 | 29篇 |
2005年 | 17篇 |
2004年 | 25篇 |
2003年 | 14篇 |
2002年 | 18篇 |
2001年 | 6篇 |
2000年 | 11篇 |
1999年 | 6篇 |
1998年 | 9篇 |
1997年 | 4篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 10篇 |
1993年 | 1篇 |
1992年 | 3篇 |
1991年 | 4篇 |
1990年 | 4篇 |
1989年 | 6篇 |
1988年 | 4篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1984年 | 4篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1971年 | 1篇 |
1970年 | 2篇 |
1969年 | 1篇 |
排序方式: 共有526条查询结果,搜索用时 0 毫秒
1.
Parallel incubations with uniformly 14C-labeled oleic and elaidic acids were conducted to compare oxidation rates in tissue homogenates prepared from rat and human hearts. Radioactivity in 14CO2 and 14C-labeled chain-shortened acid-soluble products was used to measure the extent of oxidation. Oxidation rates (pmol/min per mg heart protein) determined on 14C-labeled acid-soluble products suggest that oleic acid was oxidized 35-40% faster than elaidic acid by both male and female rat heart homogenates, whereas human heart homogenates oxidized these fatty acids at equal rates. Rates for female heart homogenates were somewhat higher than those for males in rats and humans. Rates of formation of 14CO2 were the same for each acid in rat and human heart tissue. Comparative rates of formation of oxidation products expressed as oleic/elaidic ratios from parallel incubations confirm that preferential oxidation of oleic acid occurred with rat heart homogenates, but not with the human heart homogenates. These data suggest that the presence of the trans double bond in elaidic acid does not impair its utilization for energy by human heart muscle. 相似文献
2.
3.
4.
Herzog W Zeng X Lele Z Sonntag C Ting JW Chang CY Hammerschmidt M 《Developmental biology》2003,254(1):36-49
Formation of the adenohypophysis in mammalian embryos occurs via an invagination of the oral ectoderm to form Rathke's pouch, which becomes exposed to opposing dorsoventral gradients of signaling proteins governing specification of the different hormone-producing pituitary cell types. One signal promoting pituitary cell proliferation and differentiation to ventral cell types is Sonic hedgehog (Shh) from the oral ectoderm. To study pituitary formation and patterning in zebrafish, we cloned four cDNAs encoding different pituitary hormones, prolactin (prl), proopiomelancortin (pomc), thyroid stimulating hormone (tsh), and growth hormone (gh), and analyzed their expression patterns relative to that of the pituitary marker lim3. prl and pomc start to be expressed at the lateral edges of the lim3 expression domain, before pituitary cells move into the head. This indicates that patterning of the pituitary anlage and terminal differentiation of pituitary cells starts while cells are still organized in a placodal fashion at the anterior edge of the developing brain. Following the expression pattern of prl and pomc during development, we show that no pituitary-specific invagination equivalent to Rathke's pouch formation takes place. Rather, pituitary cells move inwards together with stomodeal cells during oral cavity formation, with medial cells of the placode ending up posterior and lateral cells ending up anterior, resulting in an anterior-posterior, rather than a dorsoventral, patterning of the adenohypophysis. Carrying out loss- and gain-of-function experiments, we show that Shh from the ventral diencephalon plays a crucial role during induction, patterning, and growth of the zebrafish adenohypophysis. The phenotypes are very similar to those obtained upon pituitary-specific inactivation or overexpression of Shh in mouse embryo, suggesting that the role of Shh during pituitary development has been largely conserved between fish and mice, despite the different modes of pituitary formation in the two vertebrate classes. 相似文献
5.
Unicellular, diazotrophic cyanobacteria temporally separate dinitrogen (N2) fixation and photosynthesis to prevent inactivation of the nitrogenase by oxygen. This temporal segregation is regulated by a circadian clock with oscillating activities of N2 fixation in the dark and photosynthesis in the light. On the population level, this separation is not always complete, since the two processes can overlap during transitions from dark to light. How do single cells avoid inactivation of nitrogenase during these periods? One possibility is that phenotypic heterogeneity in populations leads to segregation of the two processes. Here, we measured N2 fixation and photosynthesis of individual cells using nanometer-scale secondary ion mass spectrometry (nanoSIMS) to assess both processes in a culture of the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii during a dark-light and a continuous light phase. We compared single-cell rates with bulk rates and gene expression profiles. During the regular dark and light phases, C. watsonii exhibited the temporal segregation of N2 fixation and photosynthesis commonly observed. However, N2 fixation and photosynthesis were concurrently measurable at the population level during the subjective dark phase in which cells were kept in the light rather than returned to the expected dark phase. At the single-cell level, though, cells discriminated against either one of the two processes. Cells that showed high levels of photosynthesis had low nitrogen fixing activities, and vice versa. These results suggest that, under ambiguous environmental signals, single cells discriminate against either photosynthesis or nitrogen fixation, and thereby might reduce costs associated with running incompatible processes in the same cell. 相似文献
6.
7.
8.
Fabio Pisano Wiebke Heine Maik Rosenheinrich Janina Schweer Aaron M. Nuss Petra Dersch 《PloS one》2014,9(7)
The two-component regulatory system PhoP/PhoQ has been shown to (i) control expression of virulence-associated traits, (ii) confer survival and growth within macrophages and (iii) play a role in Yersinia infections. However, the influence of PhoP on virulence varied greatly between different murine models of infection and its role in natural oral infections with frequently used representative isolates of Y. pseudotuberculosis was unknown. To address this issue, we constructed an isogenic set of phoP+ and phoP− variants of strain IP32953 and YPIII and analyzed the impact of PhoP using in vitro functionality experiments and a murine oral infection model, whereby we tested for bacterial dissemination and influence on the host immune response. Our results revealed that PhoP has a low impact on virulence, lymphatic and systemic organ colonization, and on immune response modulation by IP32953 and YPIII, indicating that PhoP is not absolutely essential for oral infections but may be involved in fine-tuning the outcome. Our work further revealed certain strain-specific differences in virulence properties, which do not strongly rely on the function of PhoP, but affect tissue colonization, dissemination and/or persistence of the bacteria. Highlighted intra-species variations may provide a potential means to rapidly adjust to environmental changes inside and outside of the host. 相似文献
9.
M. Schmelz Dennis L. Way Peter Borgs Wiebke K. Peitsch Hannelore Schmidt Marlys H. Witte Charles L. Witte W. W. Franke R. Moll 《Cell and tissue research》1998,294(1):11-25
Two major types of plaque-bearing adhering junctions are commonly distinguished: the actin microfilament-anchoring adhaerens junctions (AJs) and the desmosomes anchoring intermediate-sized filaments (IFs). Both types of junction usually possess the common plaque protein, plakoglobin, whereas the other plaque proteins and the transmembrane cadherins are mutually exclusive. For example, AJs contain E-, N-, or P-cadherin in combination with α- and β-catenin, vinculin and α-actinin, whereas in desmosomes, desmogleins and desmocollins are associated with desmoplakin and one or several of the plakophilins (PP1–3). Here we describe a novel type of adhering junction comprising proteins of both AJs and desmosomes and the tight junction (TJ) plaque protein, ZO-1, in a newly established, liver-derived tumorigenic rat cell line (RMEC-1). By immunofluorescence microscopy, cell-cell contacts are characterized by mostly continuous-appearing lines which are usually resolved by electron microscopy as extended arrays of closely spaced small plaque subunits. These plaque-covered regions are positive for plakoglobin, α- and β-catenin, the arm-repeat protein p120, vinculin, desmoplakin and protein ZO-1. They are positive for E-cadherin in cultures early on in passaging, but tend to turn negative for all known cadherins in densely grown cultures. On immunoblotting SDS-PAGE-separated proteins from dense-grown cell monolayers, “pan-cadherin” antibodies have reacted with a band at ~140 kDa, identified as N-cadherin by peptide fingerprinting of the immunoprecipitated protein, which for reasons not yet clear is modified or masked in immunolocalization experiments. The exact histological derivation of RMEC-1 cells is not known. However, the observations of several endothelial markers and the fact that all cells are rich in IFs containing vimentin and/or desmin, while only subpopulations also reveal IFs containing CKs 8 and 18, is suggestive of a mesenchymal, probably endothelial origin. We discuss the molecular relationship of this novel type of extended junction with other types of adhering junctions. 相似文献
10.
Duff RM Tay V Hackman P Ravenscroft G McLean C Kennedy P Steinbach A Schöffler W van der Ven PF Fürst DO Song J Djinović-Carugo K Penttilä S Raheem O Reardon K Malandrini A Gambelli S Villanova M Nowak KJ Williams DR Landers JE Brown RH Udd B Laing NG 《American journal of human genetics》2011,(6):79-740
Linkage analysis of the dominant distal myopathy we previously identified in a large Australian family demonstrated one significant linkage region located on chromosome 7 and encompassing 18.6 Mbp and 151 genes. The strongest candidate gene was FLNC because filamin C, the encoded protein, is muscle-specific and associated with myofibrillar myopathy. Sequencing of FLNC cDNA identified a c.752T>C (p.Met251Thr) mutation in the N-terminal actin-binding domain (ABD); this mutation segregated with the disease and was absent in 200 controls. We identified an Italian family with the same phenotype and found a c.577G>A (p.Ala193Thr) filamin C ABD mutation that segregated with the disease. Filamin C ABD mutations have not been described, although filamin A and filamin B ABD mutations cause multiple musculoskeletal disorders. The distal myopathy phenotype and muscle pathology in the two families differ from myofibrillar myopathies caused by filamin C rod and dimerization domain mutations because of the distinct involvement of hand muscles and lack of pathological protein aggregation. Thus, like the position of FLNA and B mutations, the position of the FLNC mutation determines disease phenotype. The two filamin C ABD mutations increase actin-binding affinity in a manner similar to filamin A and filamin B ABD mutations. Cell-culture expression of the c.752T>C (p.Met251)Thr mutant filamin C ABD demonstrated reduced nuclear localization as did mutant filamin A and filamin B ABDs. Expression of both filamin C ABD mutants as full-length proteins induced increased aggregation of filamin. We conclude filamin C ABD mutations cause a recognizable distal myopathy, most likely through increased actin affinity, similar to the pathological mechanism of filamin A and filamin B ABD mutations. 相似文献