首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   5篇
  60篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   7篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
  1989年   1篇
  1986年   1篇
排序方式: 共有60条查询结果,搜索用时 0 毫秒
1.
T Ohlmann  M Rau  V M Pain    S J Morley 《The EMBO journal》1996,15(6):1371-1382
The foot and mouth disease virus, a picornavirus, encodes two forms of a cysteine proteinase (leader or L protease) that bisects the EIF4G polypeptide of the initiation factor complex eIF4F into N-terminal (Nt) and C-terminal (Ct) domains. Previously we showed that, although in vitro cleavage of the translation initiation factor, eIF4G, with L protease decreases cap-dependent translation, the cleavage products themselves may directly promote cap-dependent protein synthesis. We now demonstrate that translation of uncapped mRNAs normally exhibits a strong requirement for eIF4F. However, this dependence is abolished when eIF4G is cleaved, with the Ct domain capable of supporting translation in the absence of the Nt domain. In contrast, the efficient translation of the second cistron of bicistronic mRNAs, directed by two distinct Internal Ribosome Entry Segments (IRES), exhibits no requirement for eIF4E but is dependent upon either intact eIF4G or the Ct domain. These results demonstrate that: (i) the apparent requirement for eIF4F for internal initiation on IRES-driven mRNAs can be fulfilled by the Ct proteolytic cleavage product; (ii) when eIF4G is cleaved, the Ct domain can also support cap-independent translation of cellular mRNAs not possessing an IRES element, in the absence of eIF4E; and (iii) when eIF4G is intact, translation of cellular mRNAs, whether capped or uncapped, is strictly dependent upon eIF4E. These data complement recent work in other laboratories defining the binding sites for other initiation factors on the eIF4G molecule.  相似文献   
2.
Coronaviruses represent a large family of enveloped RNA viruses that infect a large spectrum of animals. In humans, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic and is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2002 and 2012, respectively. All viruses described to date entirely rely on the protein synthesis machinery of the host cells to produce proteins required for their replication and spread. As such, virus often need to control the cellular translational apparatus to avoid the first line of the cellular defense intended to limit the viral propagation. Thus, coronaviruses have developed remarkable strategies to hijack the host translational machinery in order to favor viral protein production. In this review, we will describe some of these strategies and will highlight the role of viral proteins and RNAs in this process.  相似文献   
3.
All replication-competent retroviruses contain three main reading frames, gag, pol and env, which are used for the synthesis of structural proteins, enzymes and envelope proteins respectively. Complex retroviruses, such as lentiviruses, also code for regulatory and accessory proteins that have essential roles in viral replication. The concerted expression of these genes ensures the efficient polypeptide production required for the assembly and release of new infectious progeny virions. Retroviral protein synthesis takes place in the cytoplasm and depends exclusively on the translational machinery of the host infected cell. Therefore, not surprisingly, retroviruses have developed RNA structures and strategies to promote robust and efficient expression of viral proteins in a competitive cellular environment.  相似文献   
4.
High concentrations of adenosine-5'-diphosphate ADP are able to induce partial aggregation without shape change of P2Y(1) receptor-deficient mouse platelets through activation of the P2Y(12) receptor. In the present work we studied the transduction pathways selectively involved in this phenomenon. Flow cytometric analyses using R-phycoerythrin-conjugated JON/A antibody (JON/A-PE), an antibody which recognizes activated mouse alpha(IIb)beta(3) integrin, revealed a low level activation of alpha(IIb)beta(3) in P2Y(1) receptor-deficient platelets in response to 100 microM ADP or 1 microM 2MeS-ADP. Adrenaline induced no such activation but strongly potentiated the effect of ADP in a dose-dependent manner. Global phosphorylation of (32)P-labeled platelets showed that P2Y(12)-mediated aggregation was not accompanied by an increase in the phosphorylation of myosin light chain (P(20)) or pleckstrin (P(47)) and was not affected by the protein kinase C (PKC) inhibitor staurosporine. On the other hand, two unrelated phosphoinositide 3-kinase inhibitors, wortmannin and LY294002, inhibited this aggregation. Our results indicate that (i) the P2Y(12) receptor is able to trigger a P2Y(1) receptor-independent inside-out signal leading to alpha(IIb)beta(3) integrin activation and platelet aggregation, (ii) ADP and adrenaline use different signaling pathways which synergize to activate the alpha(IIb)beta(3) integrin, and (iii) the transduction pathway triggered by the P2Y(12) receptor is independent of PKC but dependent on phosphoinositide 3-kinase.  相似文献   
5.
6.
The development of the chamber angle was studied in the eyes of heterozygous Pax6(lacZ/+) mutant mice (Nature 387 (1997) 406). Mutations in PAX6 cause aniridia, a condition that is frequently associated with glaucoma, a blinding disease that may be associated with chamber angle defects. Mesenchymal cells were seen in the chamber angle at P1-P5. In wild-type mice, these cells differentiated into typical trabecular meshwork (TM) cells next to Schlemm's canal. In Pax6(lacZ/+) mice, TM cells remained undifferentiated and Schlemm's canal was absent. From P1 to P4, staining for beta-galactosidase and immunoreactivity for Pax6 were observed in chamber angle mesenchyme, but were absent later. Cultured murine TM cells expressed Pax6. The defects in chamber angle and TM differentiation were associated with a wide spectrum of other anterior eye defects, which included various degrees of iris hypoplasia and corneal haze, isolated iridocorneal adhesions and atypical coloboma, and a vascularized cornea in all adult animals. A third of the animals showed Peters' anomaly including corneal opacity and iridocorneal adhesions. The separation of the lens from the cornea was incomplete, and epithelial layers of lens and cornea were continuous. Pax6 activity is directly required for differentiation of the chamber angle. Variations in phenotype of Pax6(lacZ/+) mice appear not to involve direct dominant-negative or dose-dependent effects.  相似文献   
7.
Genomic RNA of primate lentiviruses serves both as an mRNA that encodes Gag and Gag-Pol polyproteins and as a propagated genome. Translation of this RNA is initiated by standard cap dependant mechanism or by internal entry of the ribosome. Two regions of the genomic RNA are able to attract initiation complexes, the 5′ untranslated region and the gag coding region itself. Relying on probing data and a phylogenetic study, we have modelled the secondary structure of HIV-1, HIV-2 and SIVMac coding region. This approach brings to light conserved secondary-structure elements that were shown by mutations to be required for internal entry of the ribosome. No structural homologies with other described viral or cellular IRES can be identified and lentiviral IRESes show many peculiar properties. Most notably, the IRES present in HIV-2 gag coding region is endowed with the unique ability to recruit up to three initiation complexes on a single RNA molecule. The structural and functional properties of gag coding sequence define a new type of IRES. Although its precise role is unknown, the conservation of the IRES among fast evolving lentiviruses suggests an important physiological role.  相似文献   
8.
9.
10.
Various radioligands have been used to characterize and quantify the platelet P2Y12 receptor, which share several weaknesses: (a) they are metabolically unstable and substrates for ectoenzymes, (b) they are agonists, and (c) they do not discriminate between P2Y1 and P2Y12. We used the [3H]PSB-0413 selective P2Y12 receptor antagonist radioligand to reevaluate the number of P2Y12 receptors in intact platelets and in membrane preparations. Studies in humans showed that: (1) [3H]PSB-0413 bound to 425 ± 50 sites/platelet (KD = 3.3 ± 0.6 nM), (2) 0.5 ± 0.2 pmol [3H]PSB-0413 bound to 1 mg protein of platelet membranes (KD = 6.5 ± 3.6 nM), and (3) competition studies confirmed the known features of P2Y12, with the expected rank order of potency: AR-C69931MX > 2MeSADP ≫ ADPβS > ADP, while the P2Y1 ligand MRS2179 and the P2X1 ligand α,β-Met-ATP did not displace [3H]PSB-0413 binding. Patients with severe P2Y12 deficiency displayed virtually no binding of [3H]PSB-0413 to intact platelets, while a patient with a dysfunctional P2Y12 receptor had normal binding. Studies in mice showed that: (1) [3H]PSB-0413 bound to 634 ± 87 sites/platelet (KD = 14 ± 4.5 nM) and (2) 0.7 pmol ± 0.3 [3H]PSB-0413 bound to 1 mg protein of platelet membranes (KD = 9.1 ± 5.3 nM). Clopidogrel and other thiol reagents like pCMBS or DTT abolished the binding both to intact platelets and membrane preparations. Therefore, [3H]PSB-0413 is an accurate and selective tool for radioligand binding studies aimed at quantifying P2Y12 receptors, to identify patients with P2Y12 deficiencies or quantify the effect of P2Y12 targeting drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号