首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   4篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   6篇
  2011年   3篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1995年   1篇
  1992年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
Abstract: The specific binding of [3H]WAY-100635 {N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide trihydrochloride} to rat hippocampal membrane preparations was time, temperature, and tissue concentration dependent. The rates of [3H]WAY-100635 association (k+1 = 0.069 ± 0.015 nM?1 min?1) and dissociation (k?1 = 0.023 ± 0.001 min?1) followed monoexponential kinetics. Saturation binding isotherms of [3H]WAY-100635 exhibited a single class of recognition site with an affinity of 0.37 ± 0.051 nM and a maximal binding capacity (Bmax) of 312 ± 12 fmol/mg of protein. The maximal number of binding sites labelled by [3H]WAY-100635 was ~36% higher compared with that of 8-hydroxy-2-(di-n-[3H]-propylamino)tetralin ([3H]8-OH-DPAT). The binding affinity of [3H]WAY-100635 was significantly lowered by the divalent cations CaCl2 (2.5-fold; p < 0.02) and MnCl2 (3.6-fold; p < 0.05), with no effect on Bmax. Guanyl nucleotides failed to influence the KD and Bmax parameters of [3H]WAY-100635 binding to 5-HT1A receptors. The pharmacological binding profile of [3H]WAY-100635 was closely correlated with that of [3H]8-OH-DPAT, which is consistent with the labelling of 5-hydroxytryptamine1A (5-HT1A) sites in rat hippocampus. [3H]WAY-100635 competition curves with 5-HT1A agonists and partial agonists were best resolved into high- and low-affinity binding components, whereas antagonists were best described by a one-site binding model. In the presence of 50 µM guanosine 5′-O-(3-thiotriphosphate) (GTPγS), competition curves for the antagonists remained unaltered, whereas the agonist and partial agonist curves were shifted to the right, reflecting an influence of G protein coupling on agonist versus antagonist binding to the 5-HT1A receptor. However, a residual (16 ± 2%) high-affinity agonist binding component was still apparent in the presence of GTPγS, indicating the existence of GTP-insensitive sites.  相似文献   
2.
3.
Nimesulide, a preferential COX-2 inhibitor, has been associated with rare idiosyncratic hepatotoxicity. The underlying mechanisms of liver injury are unknown, but experimental evidence has identified oxidative stress as a potential hazard and mitochondria as a target. The aim of this study was to explore whether genetic mitochondrial abnormalities, resulting in impaired mitochondrial function and mildly increased oxidative stress, might sensitize mice to the hepatic adverse effects of nimesulide. We used heterozygous superoxide dismutase 2 (Sod2(+/-)) mice as a model, as these mice develop clinically silent mitochondrial stress but otherwise appear normal. Nimesulide was administered for 4 weeks (10 mg/kg, ip, bid), at a dose equivalent to human therapeutic dosage. We found that the drug potentiated hepatic mitochondrial oxidative injury (decreased aconitase activity, increased protein carbonyls) in Sod2(+/-), but not wild-type, mice. Furthermore, the nimesulide-treated mutant mice exhibited increased hepatic cytosolic levels of cytochrome c and caspase-3 activity, as well as increased numbers of apoptotic hepatocytes. Finally, nimesulide in vitro caused a concentration-dependent net increase in superoxide anion in mitochondria from Sod2(+/-), but not Sod2(+/+) mice. In conclusion, repeated administration of nimesulide can superimpose an oxidant stress, potentiate mitochondrial damage, and activate proapoptotic factors in mice with genetically compromised mitochondrial function.  相似文献   
4.
During biogenesis of the peroxisome, a subcellular organelle, the peroxisomal-targeting signal 1 (PTS1) receptor Pex5 functions as a shuttling receptor for PTS1-containing peroxisomal matrix proteins. However, the precise mechanism of receptor shuttling between peroxisomes and cytosol remains elusive despite the identification of numerous peroxins involved in this process. Herein, a new factor was isolated by a combination of biochemical fractionation and an in vitro Pex5 export assay, and was identified as AWP1/ZFAND6, a ubiquitin-binding NF-κB modulator. In the in vitro Pex5 export assay, recombinant AWP1 stimulated Pex5 export and an anti-AWP1 antibody interfered with Pex5 export. AWP1 interacted with Pex6 AAA ATPase, but not with Pex1-Pex6 complexes. Preferential binding of AWP1 to the cysteine-ubiquitinated form of Pex5 rather than to unmodified Pex5 was mediated by the AWP1 A20 zinc-finger domain. Inhibition of AWP1 by RNA interference had a significant effect on PTS1-protein import into peroxisomes. Furthermore, in AWP1 knock-down cells, Pex5 stability was decreased, similar to fibroblasts from patients defective in Pex1, Pex6 and Pex26, all of which are required for Pex5 export. Taken together, these results identify AWP1 as a novel cofactor of Pex6 involved in the regulation of Pex5 export during peroxisome biogenesis.  相似文献   
5.
The shear strength of soil is an important parameter that affects tree stability and can vary depending on the magnitude of the soil’s negative pore-water pressure (matric suction). The surface flux boundary condition affects the matric suction of soil, and therefore is important for tree stability. Field measurements were performed around a roadside tree for 2 years. The instrumentation results show that the matric suction in the soil fluctuated between 0 and 35 kPa. Matric suction changes in the soil could lead to a decrease in the tree resistive moment of up to 80 %.  相似文献   
6.
Mitochondrial fission facilitates cytochrome c release from the intracristae space into the cytoplasm during intrinsic apoptosis, although how the mitochondrial fission factor Drp1 and its mitochondrial receptors Mff, MiD49, and MiD51 are involved in this reaction remains elusive. Here, we analyzed the functional division of these receptors with their knockout (KO) cell lines. In marked contrast to Mff-KO cells, MiD49/MiD51-KO and Drp1-KO cells completely resisted cristae remodeling and cytochrome c release during apoptosis. This phenotype in MiD49/51-KO cells, but not Drp1-KO cells, was completely abolished by treatments disrupting cristae structure such as OPA1 depletion. Unexpectedly, OPA1 oligomers generally thought to resist cytochrome c release by stabilizing the cristae structure were similarly disassembled in Drp1-KO and MiD49/51-KO cells, indicating that disassembly of OPA1 oligomers is not directly linked to cristae remodeling for cytochrome c release. Together, these results indicate that Drp1-dependent mitochondrial fission through MiD49/MiD51 regulates cristae remodeling during intrinsic apoptosis.  相似文献   
7.
Cysmethynil, a newly identified small molecule inhibitor of isoprenylcysteine carboxylmethyl transferase (Icmt) is involved in the post-translational modification of CaaX proteins. Cysmethynil causes cell death in many human cancer cells in vitro, and inhibits tumor growth in the xenograft mouse model in vivo. A HPLC method for the quantification of cysmethynil in mouse plasma was developed and validated. The lower limit of quantification of this method was 0.01 μg/ml. Inter- and intra-day variability ranged from 0.38–8.5% and accuracy was between 86% and 98%. This sensitive method was used to quantify cysmethynil in plasma of mice after intraperitoneal dosing for preliminary pharmacokinetic studies.  相似文献   
8.
9.
10.
Background: The mucin Muc1 is constitutively expressed by the gastric mucosa and is likely the first point of direct contact between the host stomach and the adherent pathogens. The expression of Muc1 has been shown to limit colonization of mice by Helicobacter pylori, known to adhere to the gastric epithelium, as well as associated pathology. However, the potential role of this mucin against nonadherent Helicobacter has not been previously studied. We therefore examined the importance of Muc1 on the pathogenesis of Helicobacter felis, believed not to adhere to the murine mucosa. Methods and results: Using primary cell cultures, we found that H. felis can bind gastric epithelial cells in vitro, and adherence to epithelial cells deficient in Muc1 was increased compared to controls that expressed the mucin. However, following infection of deficient mice, we found that Muc1 did not impact on H. felis colonization or pathogenesis in vivo, in contrast to previous observations with H. pylori. Conclusions: This demonstrates a variable effect of Muc1 on protection against closely related adherent and nonadherent Helicobacter species, and supports a key role for Muc1 in limiting attachment of adherent bacteria to the gastric mucosal surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号