首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   19篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   9篇
  2013年   4篇
  2012年   12篇
  2011年   12篇
  2010年   11篇
  2009年   5篇
  2008年   6篇
  2007年   11篇
  2006年   6篇
  2005年   17篇
  2004年   17篇
  2003年   3篇
  2002年   11篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1970年   1篇
  1954年   2篇
  1947年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
1.
Akt is perhaps the most frequently activated oncoprotein in human cancers. Overriding cell cycle checkpoint in combination with the inhibition of apoptosis are two principal requirements for predisposition to cancer. Here we show that the activation of Akt is sufficient to promote these two principal processes, by inhibiting Chk1 activation with concomitant inhibition of apoptosis. These activities of Akt cannot be recapitulated by the knockdown of Chk1 alone or by overexpression of Bcl2. Rather the combination of Chk1 knockdown and Bcl2 overexpression is required to recapitulate Akt activities. Akt was shown to directly phosphorylate Chk1. However, we found that Chk1 mutants in the Akt phosphorylation sites behave like wild-type Chk1 in mediating G2 arrest, suggesting that the phosphorylation of Chk1 by Akt is either dispensable for Chk1 activity or insufficient by itself to exert an effect on Chk1 activity. Here we report a new mechanism by which Akt affects G2 cell cycle arrest. We show that Akt inhibits BRCA1 function that induces G2 cell cycle arrest. Akt prevents the translocation of BRCA1 to DNA damage foci and, thereby, inhibiting the activation of Chk1 following DNA damage.  相似文献   
2.
We have utilized [(15)N]alanine or (15)NH(3) as metabolic tracers in order to identify sources of nitrogen for hepatic ureagenesis in a liver perfusion system. Studies were done in the presence and absence of physiologic concentrations of portal venous ammonia in order to test the hypothesis that, when the NH(4)(+):aspartate ratio is >1, increased hepatic proteolysis provides cytoplasmic aspartate in order to support ureagenesis. When 1 mm [(15)N]alanine was the sole nitrogen source, the amino group was incorporated into both nitrogens of urea and both nitrogens of glutamine. However, when studies were done with 1 mm alanine and 0.3 mm NH(4)Cl, alanine failed to provide aspartate at a rate that would have detoxified all administered ammonia. Under these circumstances, the presence of ammonia at a physiologic concentration stimulated hepatic proteolysis. In perfusions with alanine alone, approximately 400 nmol of nitrogen/min/g liver was needed to satisfy the balance between nitrogen intake and nitrogen output. When the model included alanine and NH(4)Cl, 1000 nmol of nitrogen/min/g liver were formed from an intra-hepatic source, presumably proteolysis. In this manner, the internal pool provided the cytoplasmic aspartate that allowed the liver to dispose of mitochondrial carbamyl phosphate that was rapidly produced from external ammonia. This information may be relevant to those clinical situations (renal failure, cirrhosis, starvation, low protein diet, and malignancy) when portal venous NH(4)(+) greatly exceeds the concentration of aspartate. Under these circumstances, the liver must summon internal pools of protein in order to accommodate the ammonia burden.  相似文献   
3.
A rapid gas chromatographic-mass spectrometric method for the determination of 15N in the guanidino nitrogens of arginine is described. The method is based on formation of the N-tetratrifluoroacetyl-arginine derivative. Approximately 0.15 mol% excess 15N can be detected in as little as 50 microliters of plasma with an average coefficient of variation of 8.8%. The possible fragmentation pattern of the N-tetra-trifluoroacetyl-arginine derivative is described. The method was applied to determine the appearance of 15N enrichment in plasma arginine in a healthy adult volunteer during a constant infusion of 15NH4Cl. A plateau level of 0.7 atom% excess was observed 2 h after the 15NH4Cl infusion was started.  相似文献   
4.
The incorporation of [15N]glutamic acid into glutathione was studied in primary cultures of astrocytes. Turnover of the intracellular glutathione pool was rapid, attaining a steady state value of 30.0 atom% excess in 180 min. The intracellular glutathione concentration was high (20-40 nmol/mg protein) and the tripeptide was released rapidly into the incubation medium. Although labeling of glutathione (atom% excess) with [15N]glutamate occurred rapidly, little accumulation of 15N in glutathione was noted during the incubation compared with 15N in aspartate, glutamine, and alanine. Glutathione turnover was stimulated by incubating the astrocytes with diethylmaleate, an electrophile that caused a partial depletion of the glutathione pool(s). Diethylmaleate treatment also was associated with significant reductions of intraastrocytic glutamate, glycine, and cysteine, i.e., the constituents of glutathione. Glutathione synthesis could be stimulated by supplementing the steady-state incubation medium with 0.05 mM L-cysteine, such treatment again partially depleting intraastrocytic glutamate and causing significant reductions of 15N labeling of both alanine and glutamine, suggesting that glutamate had been diverted from the synthesis of these amino acids and toward the formation of glutathione. The current study underscores both the intensity of glutathione turnover in astrocytes and the relationship of this turnover to the metabolism of glutamate and other amino acids.  相似文献   
5.
Abstract: The aim was to study the extent to which leu-cine furnishes α-NH2 groups for glutamate synthesis via branched-chain amino acid aminotransferase. The transfer of N from leucine to glutamate was determined by incubating astrocytes in a medium containing [15N]leucine and 15 unlabeled amino acids; isotopic abundance was measured with gas chromatography-mass spectrometry. The ratio of labeling in both [15N]glutamate/[15N]leucine and [2-15N]glutamine/[15N]leucine suggested that at least one-fifth of all glutamate N had been derived from leucine nitrogen. At the same time, enrichment in [15N]leucine declined, reflecting dilution of the 16N label by the unlabeled amino acids that were in the medium. Isotopic abundance in [16N]-isoleucine increased very quickly, suggesting the rapidity of transamination between these amino acids. The appearance of 15N in valine was more gradual. Measurement of branched-chain amino acid transaminase showed that the reaction from leucine to glutamate was approximately six times more active than from glutamate to leucine (8.72 vs. 1.46 nmol/min/mg of protein). However, when the medium was supplemented with α-ketoisocaproate (1 mM), the ketoacid of leucine, the reaction readily ran in the “reverse” direction and intraastrocytic [glutamate] was reduced by ~50% in only 5 min. Extracellular concentrations of α-ketoisocaproate as low as 0.05 mM significantly lowered intracellular [glutamate]. The relative efficiency of branched-chain amino acid transamination was studied by incubating astrocytes with 15 unlabeled amino acids (0.1 mM each) and [15N]glutamate. After 45 min, the most highly labeled amino acid was [15N]alanine, which was closely followed by [15N]leucine and [15N]isoleucine. Relatively little 15N was detected in any other amino acids, except for [15N]serine. The transamination of leucine was ~17 times greater than the rate of [1-14C]leucine oxidation. These data indicate that leucine is a major source of glutamate nitrogen. Conversely, reamination of a-ketoisocaproate, the ketoacid of leucine, affords a mechanism for the temporary “buffering” of intracellular glutamate.  相似文献   
6.
Summary The effect of the exchangeable cation on the condensation of glycine and alanine was investigated using a series of homoionic bentonites. A cycling procedure of drying, warming and wetting was employed. Peptide bond formation was observed, and the effectiveness of metal ions to catalyze the condensation was Cu2+ > Ni2+ Zn2+ > Na+. Glycine showed 6% of the monomer incorporated into oligomers with the largest detected being the pentamer. Alanine showed less peptide bond formation (a maximum of 2%) and only the dimer was observed.  相似文献   
7.
Normal cells secrete heat shock protein 90 alpha (Hsp90α) in response to tissue injury. Tumor cells have managed to constitutively secrete Hsp90α during invasion and metastasis. The sole function of extracellular Hsp90α (eHsp90α) is to promote cell motility, a critical event for both wound healing and tumor progression. The mechanism of promotility action by eHsp90α, however, has remained elusive. A key issue is whether eHsp90α still acts as a chaperone outside the cells or is a new and bona fide signaling molecule. Here, we have provided evidence that eHsp90α utilizes a unique transmembrane signaling mechanism to promote cell motility and wound healing. First, subdomain II in the extracellular part of low-density lipoprotein receptor-related protein 1 (LRP-1) receives the eHsp90α signal. Then, the NPVY but not the NPTY motif in the cytoplasmic tail of LRP-1 connects eHsp90α signaling to serine 473 but not threonine 308 phosphorylation in Akt kinases. Individual knockdown of Akt1, Akt2, or Akt3 revealed the importance of Akt1 and Akt2 in eHsp90α-induced cell motility. Akt gene rescue experiments suggest that Akt1 and Akt2 work in concert, rather than independently, to mediate eHsp90α promotility signaling. Finally, Akt1 and Akt2 knockout mice showed impaired wound healing that cannot be corrected by topical application with the eHsp90α protein.  相似文献   
8.
9.
Inhibition of Chk1 by activated PKB/Akt   总被引:2,自引:0,他引:2  
We have shown recently that DNA damage effector kinase Chk1 is phosphorylated in vitro by protein kinase B/Akt (PKB/Akt) on serine 280. Activation of Chk1 by DNA damage in vivo is suppressed in presence of activated PKB. In this study we show that Chk1 is phosphorylated by PKB in vivo, and that increased phosphorylation by PKB on serine 280 correlates with impairment of Chk1 activation by DNA damage. Our results indicate a likely mechanism for the negative effects that phosphorylation of serine 280 has on activation of Chk1. The Chk1 protein phosphorylated by PKB on serine 280 does not enter into protein complexes after replication arrest. Moreover, Chk1 phosphorylated by PKB fails to undergo activating phosphorylation on serine 345 by ATM/ATR. Phosphorylation by ATM/ATR and association with other checkpoint proteins are essential steps in activation of Chk1. Inhibition of these steps provides a plausible explanation for the observed attenuation of Chk1 activation by activated PKB after DNA damage.  相似文献   
10.
A molecular view on pluripotent stem cells   总被引:8,自引:0,他引:8  
Eiges R  Benvenisty N 《FEBS letters》2002,529(1):135-141
Pluripotent stem cells are undifferentiated cells that are capable of differentiating to all three embryonic germ layers and their differentiated derivatives. They are transiently found during embryogenesis, in preimplantation embryos and fetal gonads, or as established cell lines. These unique cell types are distinguished by their wide developmental potential and by their ability to be propagated in culture indefinitely, without loosing their undifferentiated phenotype. This short review intends to give a general overview on the pluripotent nature of embryo-derived stem cells with a focus on human embryonic stem cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号