首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   3篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2001年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
Incubation of murine peritoneal macrophages with platelet-activating factor (PAF; 1-O-alkyl(C16 + C18)-2-acetyl-sn-glycerol-3-phosphorylcholine) results in the rapid accumulation of [3H]inositol phosphates and sn-1,2-diacylglycerol (DAG) and mobilization of intracellular calcium (Prpic, V., Uhing, R. J., Weiel, J. E., Jakoi, L., Gawdi, G., Herman, B., and Adams, D. O. (1988) J. Cell Biol. 107, 363-372). We have further investigated the relationship of phosphoinositide metabolism to accumulation of DAG and the possible involvement of protein kinase C in the accumulation of DAG in response to PAF. DAG accumulation proceeds at a slower rate than the accumulation of either [3H] inositol 1,4,5-trisphosphate or total [3H]inositol phosphates. Accumulation of DAG from additional precursors is suggested from both an estimation of the mass of total inositol phosphates produced and the accumulation of [3H]choline in response in PAF. Down-regulation of protein kinase C by prolonged pretreatment with phorbol ester or inhibition of the enzyme with sphingosine inhibited the PAF-generated accumulation of DAG at 10 min by approximately 80%. Under the same conditions, no inhibition of PAF-stimulated generation of [3H]inositol 1,4,5-trisphosphate was observed. Similar inhibition was observed when 10 microM ionomycin or 0.1 microM phorbol 12-myristate 13-acetate were used to stimulate accumulation of DAG. The results suggest that PAF stimulates the accumulation of DAG from source other than phosphatidylinositol metabolism in peritoneal macrophages and that this occurs subsequent to the activation of protein kinase C.  相似文献   
2.
Arthropod appendages are among the most diverse animal organs and have been adapted to a variety of functions. Due to this diversity, it can be difficult to recognize homologous parts in different appendage types and different species. Gene expression patterns of appendage development genes have been used to overcome this problem and to identify homologous limb portions across different species and their appendages. However, regarding the largest arthropod group, the hexapods, most of these studies focused on members of the winged insects (Pterygota), but primitively wingless groups like the springtails (Collembola) or silverfish and allies (Zygentoma) are underrepresented. We have studied the expression of a set of appendage patterning genes in the firebrat Thermobia domestica and the white springtail Folsomia candida. The expressions of Distal-less (Dll) and dachshund (dac) are generally similar to the patterns reported for pterygote insects. Modifications of gene regulation, for example, the lack of Dll expression in the palp of F. candida mouthparts, however, point to changes in gene function that can make the use of single genes and specific expression domains problematic for homology inference. Such hypotheses should therefore not rely on a small number of genes and should ideally also include information about gene function. The expression patterns of homothorax (hth) and extradenticle (exd) in both species are similar to the patterns of crustaceans and pterygote insects, but differ from those in chelicerates and myriapods. The proximal specificity of hth thus appears to trace from a common hexapod ancestor and also provides a link to the regulation of this gene in crustaceans.  相似文献   
3.
Diplopods (millipedes) are known for their irregular body segmentation. Most importantly, the number of dorsal segmental cuticular plates (tergites) does not match the number of ventral structures (e.g., sternites). Controversial theories exist to explain the origin of this so-called diplosegmentation. We have studied the embryology of a representative diplopod, Glomeris marginata, and have analyzed the segmentation genes engrailed (en), hedgehog (hh), cubitus-interruptus (ci), and wingless (wg). We show that dorsal segments can be distinguished from ventral segments. They differ not only in number and developmental history, but also in gene expression patterns. engrailed, hedgehog, and cubitus-interruptus are expressed in both ventral and dorsal segments, but at different intrasegmental locations, whereas wingless is expressed only in the ventral segments, but not in the dorsal segments. Ventrally, the patterns are similar to what has been described from Drosophila and other arthropods, consistent with a conserved role of these genes in establishing parasegment boundaries. On the dorsal side, however, the gene expression patterns are different and inconsistent with a role in boundary formation between segments, but they suggest that these genes might function to establish the tergite borders. Our data suggest a profound and rather complete decoupling of dorsal and ventral segmentation leading to the dorsoventral discrepancies in the number of segmental elements. Based on gene expression, we propose a model that may resolve the hitherto controversial issue of the correlation between dorsal tergites and ventral leg pairs in basal diplopods (e.g., Glomeris) and is suggestive also for derived, ring-forming diplopods (e.g., Juliformia).  相似文献   
4.
The spiders Cupiennius salei and Achaearanea tepidariorum are firmly established laboratory models that have already contributed greatly to answering evolutionary developmental questions. Here we appraise why these animals are such useful models from phylogeny, natural history and embryogenesis to the tools available for their manipulation. We then review recent studies of axis formation, segmentation, appendage development and neurogenesis in these spiders and how this has contributed to understanding the evolution of these processes. Furthermore, we discuss the potential of comparisons of silk production between Cupiennius and Achaearanea to investigate the origins and diversification of this evolutionary innovation. We suggest that further comparisons between these two spiders and other chelicerates will prove useful for understanding the evolution of development in metazoans.  相似文献   
5.
We isolated the homologue of the Drosophila gene dachshund (dac) from the beetle Tribolium castaneum. Tc'dac is expressed in all appendages except urogomphi and pleuropodia. Tc'dac is also active in the head lobes, in the ventral nervous system, in the primordia of the Malpighian tubules and in bilateral stripes corresponding to the presumptive dorsal midline. Expression of Tc'dac in the labrum lends support to the interpretation that the insect labrum is derived from a metameric appendage. The legs of Tribolium accommodate two Tc'dac domains, of which the more distal one corresponds to the single dac domain described for Drosophila leg discs. In contrast to Drosophila, where this domain is thought to intercalate between the homothorax (hth) and the Distal-less (Dll) domains, in Tribolium it arises from within the Dll domain. In embryos mutant for the Tc'Dll gene we find that the distal Tc'dac domain in the legs, as well as the expression in the labrum, are deleted while the proximal leg domain and the mandibular expression are unaffected. Based on Tc'dac expression in wild-type and mutant embryos, we demonstrate serial homology of the complete mandible with the coxa of the thoracic legs, which affirms the gnathobasic nature of the insect mandible.  相似文献   
6.
The genetic control of leg development is well characterized in the fly Drosophila melanogaster. These control mechanisms, however, must differ to some degree between different insect species to account for the morphological diversity of thoracic legs in the insects. The legs of the flour beetle Tribolium castaneum differ from the Drosophila legs in their developmental mode as well as in their specific morphology especially at the larval stage. In order to identify genes involved in the morphogenesis of the Tribolium larval legs, we have analyzed EGFP enhancer trap lines of Tribolium. We have identified the zfh2 gene as a novel factor required for normal leg development in Tribolium. RNA interference with zfh2 function leads to two alternative classes of leg phenotype. The loss of a leg segment boundary and the generation of ectopic outgrowths in one class of phenotype suggest a role in leg segmentation and segment growth. The malformation of the pretarsal claw in the second class of phenotype suggests a role in distal development and the morphogenesis of the claw-shaped morphology of the pretarsus. This suggests that zfh2 is involved in the regulation of an unidentified target gene in a concentration-dependent manner. Our results demonstrate that enhancer trap screens in T. castaneum have the potential to identify novel gene functions regulating specific developmental processes.  相似文献   
7.
8.
LPS and lipid A initiated enhanced hydrolysis of PIP2 in macrophages. When murine peritoneal macrophages were labeled with [2-3H]myoinositol and stimulated with either LPS or lipid A, a rapid (within 10 sec) rise in Ins(1,4,5)P3 was observed. The breakdown pattern of Ins(1,4,5)P3 was complex; this included breakdown of Ins(1,4,5)P3 and formation of Ins(1,3,4,5)P4 (approximately 10 to 30 sec), and ultimately formation of Ins(1,3,4)P3 (approximately 60 sec). Within 10 sec after treatment, LPS caused an average increase of about fourfold to fivefold in Ins(1,4,5)P3, which declined over 5 min. When the total isomers of InsP3 were measured, levels rose about twofold in response to LPS or to lipid A and remained elevated for as long as 5 min. Lipid A, in the concentration range of 0.1 to 10 micrograms/ml, induced elevated intracellular levels of Ca2+ as quantified by fluorescence with Quin 2 or with Fura 2. When single, adherent Fura 2-loaded macrophages were treated with lipid A, basal levels of calcium rose over 10 sec from approximately 55 nM to almost 600 nM. LPS, paradoxically, did not cause such substantial increases in intracellular calcium (i.e., increases of approximately 26 nM) when judged by Fura 2 fluorescence. LPS treatment led to enhanced phosphorylation of a characteristic set of proteins, similar to those induced by stimulating protein kinase C (PKC) with phorbol myristate acetate as previously reported. The enhanced phosphorylation of pp28, pp33, and pp67 in macrophages was evident by 15 min and optimal by 30 min. Taken together, these observations indicate that LPS and lipid A cause increased breakdown of phosphatidylinositol 4,5-bisphosphate, which led to enhanced intracellular levels of calcium and also to enhanced protein phosphorylation, presumably mediated by PKC. The data thus suggest that one major intracellular signal transduction mechanism, initiated by LPS and lipid A in macrophages, is the rapid breakdown of PIP2.  相似文献   
9.
Chimeric G proteins made by replacing the COOH-terminal heptapeptide of G(alpha)q with the COOH-terminal heptapeptide of G(alpha)s or G(alpha)i were used to assess the relative coupling of beta(3)-adrenergic receptor (beta(3)-AR) splice variants (beta(3A) and beta(3B)) to G(alpha)s and G(alpha)i. The G(alpha)q/s and G(alpha)q/i chimeras transformed the response to receptor activation from regulation of adenylyl cyclase to mobilization of intracellular calcium (Ca(2+)(i)). Complementary high-throughput and single-cell approaches were used to evaluate agonist-induced coupling of the receptor to the G protein chimeras. In cells stably transformed with rat beta(3)-AR, transfected with the G protein chimeras, and evaluated using a scanning fluorometer, beta(3)-AR-induced coupling to G(alpha)q/s produced a rapid eightfold increase in Ca(2+)(i) followed by a slow decay to levels 25% above baseline. G(alpha)q/i also linked rat beta(3)-AR to mobilization of Ca(2+)(i) in a similar time- and agonist-dependent manner, but the net 2.5-fold increase in Ca(2+)(i) was only 30% of the response obtained with G(alpha)q/s. Activation of the rat beta(3)-AR also increased GTP binding to endogenous G(alpha)i threefold in membranes from CHO cells stably transformed with the receptor. A complementary single-cell imaging approach was used to assess the relative coupling of mouse beta(3A)- and beta(3B)-AR to G(alpha)i under conditions established to produce equivalent agonist-dependent coupling of the receptor splice variants to G(alpha)q/s and to increases in intracellular cAMP through endogenous G(alpha)s. The beta(3A)- and beta(3B)-AR coupled equivalently to G(alpha)q/i, but the temporal patterns of Ca(2+)(i) mobilization indicated that coupling was significantly less efficient than coupling to G(alpha)q/s. Collectively, these findings indicate less efficient but equivalent coupling of beta(3A)- and beta(3B)-AR to G(alpha)i vs. G(alpha)s and suggest that differential expression of the splice variants would not produce local differences in signaling networks linked to beta(3)-AR activation.  相似文献   
10.
The prosoma of spiders bears different gnathal (labrum, chelicerae, pedipalps) and locomotory appendages (legs). In most species these appendages are also used for additional functions, e.g. sensing, mating, and courtship. The opisthosoma is equipped with four pairs of highly specialized appendages. Two pairs of spinnerets are used for silk production and manipulation. The other two pairs of appendages are internalized during development and give rise to a complex respiratory system of book lungs and tracheae. Thus spiders have a number of different appendage types with radically different adult morphologies. Furthermore, all these appendage types display significant additional species specific diversity correlating with a large spectrum of functions of the appendages. Despite this importance of appendage diversity for the evolution of the spiders we know relatively little about the genetic patterning mechanisms producing this diversity of morphology. We review recent advances concerning the developmental genetics of spider appendage diversification, mainly concentrating on open questions and future directions of research. We conclude that the deeper understanding of appendage development and diversity in spiders can contribute significantly not only to evolutionary developmental biology, but also to behavioral biology, speciation research and population genetics, and the study of sexually dimorphic traits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号