首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   850篇
  免费   83篇
  国内免费   1篇
  2023年   2篇
  2022年   14篇
  2021年   38篇
  2020年   24篇
  2019年   29篇
  2018年   27篇
  2017年   30篇
  2016年   23篇
  2015年   44篇
  2014年   55篇
  2013年   60篇
  2012年   64篇
  2011年   64篇
  2010年   31篇
  2009年   35篇
  2008年   28篇
  2007年   32篇
  2006年   30篇
  2005年   38篇
  2004年   28篇
  2003年   38篇
  2002年   28篇
  2001年   7篇
  2000年   20篇
  1999年   13篇
  1998年   7篇
  1997年   8篇
  1996年   5篇
  1995年   3篇
  1994年   11篇
  1993年   6篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   6篇
  1988年   9篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1979年   2篇
  1978年   5篇
  1977年   4篇
  1976年   12篇
  1956年   1篇
  1955年   1篇
  1944年   1篇
排序方式: 共有934条查询结果,搜索用时 15 毫秒
1.
Amphipyrinae have long been a catchall taxon for Noctuidae, with most members lacking discernible morphological synapomorphies that would allow their assignment to one of the many readily diagnosable noctuid subfamilies. Here data from seven gene regions (> 5500 bp) for more than 120 noctuid genera are used to infer a phylogeny for Amphipyrinae and related subfamilies. Sequence data for 57 amphipyrine genera – most represented by the type species of the genus – are examined. We present here the first large‐scale molecular phylogenetic study of Amphipyrinae and the largest molecular phylogeny of Noctuidae to date; several proposed nomenclatural changes for well‐supported results; and the identification of areas of noctuid phylogeny where greater taxon sampling and/or genomic‐scale data are needed. Adult and larval morphology, along with life‐history traits, for taxonomic groupings most relevant to the results are discussed. Amphipyrinae are significantly redefined; many former amphipyrines, excluded as a result of these analyses, are reassigned to other noctuid subfamily‐level taxa. Four genera, Chamaeclea Grote, Heminocloa Barnes & Benjamin, Hemioslaria Barnes & Benjamin and Thurberiphaga Dyar, are transferred to the tribe Chamaecleini Keegan & Wagner tribe n. in Acontiinae. Stiriina is elevated to Stiriinae rev. stat. , Grotellina is elevated to Grotellinae rev. stat. and Annaphilina is elevated to Annaphilini rev. stat. Acopa Harvey is transferred to Bryophilinae, Aleptina Dyar is transferred to Condicinae, Leucocnemis Hampson and Oxycnemis gracillinea (Grote) are transferred to Oncocnemidinae, Nacopa Barnes & Benjamin is transferred to Noctuinae and Narthecophora Smith is transferred to Stiriinae. Azenia Grote (and its subtribe Azeniina), Cropia Walker, Metaponpneumata Möschler, Sexserrata Barnes & Benjamin and Tristyla Smith are transferred to Noctuidae incertae sedis. Hemigrotella Barnes & McDunnough (formerly in subtribe Grotellina) is retained in Amphipyrinae. Argentostiria Poole and Bistica Dyar are retained in Stiriini but removed from incertae sedis position. This published work has been registered on ZooBank: http://zoobank.org/urn:lsid:zoobank.org:pub:4A140782‐31BA‐445A‐B7BA‐6EAB98ED43FA .  相似文献   
2.
Computer simulations are used to predict the behavior of pollen grains with different physical properties within the acceleration field created around the ovules of the gymnosperm Ephedra trifurca. A modelling procedure is given that (1) calculates the number of pollen grains captured by an ovule's pollination-droplet and (2) gives a correlation between pollination efficiency and the physical properties (= mass, size) of different types of pollen. Based on this procedure, the number of Ephedra pollen grains captured by micropyles can be less than the number captured from other species. However, the mass and size of Ephedra pollen grains appear to coincide with those predicted to yield a local maximum of pollination efficiency, i.e. slightly larger or smaller values of either mass or size would decrease the probability of capture. In addition, the properties of Ephedra pollen grains operate synergistically in the aerodynamic environment around ovules and are focused to collide with pollination-droplets. By analogy, the properties of Ephedra pollen coincide with those predicted for a localized adaptive peak. The physical properties of pollen grain types other than E. trifurca that can maximize pollen capture are not generally represented in the aerobiology of Ephedra during the pollination season. Therefore, the phenology of pollen release, community taxonomic-composition, and the physics of particle capture play collectively important roles in the reproductive success of Ephedra trifurca.  相似文献   
3.
A linear incremental finite element model is used to analyze the mechanical behavior of the left ventricle. The ventricle is treated as a heterogeneous, non-linearly elastic, isotropic, thick-walled solid of revolution. A new triaxial constitutive relation for the myocardium is presented which exhibits the observed exponential length-passive tension behavior of left ventricular papillary muscle in the limit of uniaxial tension. This triaxial relation contains three parameters: (a) a “small strain” Young's modulus, (b) a Poisson's ratio, and (c) a parameter which characterizes the nonlinear aspect of the elastic behavior of heart muscle. The inner third and outer two-thirds of the ventricular wall are assumed to have small strain Young's moduli of 30 and 60 g/cm2, respectively. The Poisson's ratio is assumed to be equal to 0.49 throughout the ventricular wall. In general, the results of this study indicate that while a linearly elastic model for the ventricle may be adequate in terms of predicting pressure-volume relationships, a linear model may have serious limitations with regard to predicting fiber elongation within the ventricular wall. For example, volumes and midwall equatorial circumferential strains predicted by the linear and nonlinear models considered in this study differ by approximately 20 and 90%, respectively, at a transmural pressure of 12 cm H2O.  相似文献   
4.
Activated neutrophils cause extensive DNA damage in neighboring nonphagocytic cells. To determine whether compounds in the extracellular milieu participate in the DNA damage process, murine neutrophils were cocultivated with target tumor cells in media of varying composition. Using the alkaline elution assay, it was found that the level of strand breaks induced was significantly higher (2.8-fold) in complex cell culture media than in minimal phosphate-buffered saline. Addition of amino acids in general and of histidine in particular increased the level of damage nearly to that observed in complete media (2.7- and 2.1-fold, respectively). The histidine stimulation was concentration-dependent and reached a maximum at 100-400 microM. The mechanism whereby this occurred is not proven but probably derived from chelation of metals and participation in a site-specific Fenton reaction. Addition of the cell-impermeable chelator EDTA dramatically inhibited induction of strand breaks by neutrophils in complete media and prevented the enhancement of damage induced by histidine in phosphate-buffered saline. None of the effects on neutrophil-induced damage could be attributed to modulation of the oxidative burst activity of the cells (O2- and H2O2 production). Histidine also enhanced induction of strand breaks by reagent H2O2. However, EDTA had no effect or actually increased the level of damage induced by both a bolus of H2O2 and a flux of H2O2 generated by glucose oxidase. The cell-permeable chelator o-phenanthroline inhibited both neutrophil- and H2O2-induced damage. The results indicate that secondary reactions involving extracellular amino acids and metals contribute significantly to neutrophil-induced DNA damage to neighboring cells. Moreover, the data show that the mechanism whereby neutrophils induce this damage cannot be attributed solely to secretion of H2O2.  相似文献   
5.
The African trypanosomes express two major surface proteins, the variant surface glycoprotein (VSG) and the procyclic acidic repetitive protein (PARP). The RNA polymerase that transcribes the VSG and PARP genes shares many characteristics with RNA polymerase I. We show that although there is very little similarity in nucleotide sequence, the functional structure of a trypanosome rRNA promoter is almost identical to that of the PARP promoter. Further, domains from the PARP promoter can functionally substitute for the corresponding parts of the rRNA promoter, and vice versa.  相似文献   
6.
Niklas  Karl J. 《Annals of botany》1993,72(5):475-483
Perianth MP, gynoecium MG, and androecium MA dry-weight biomass(in g) of 39 species of perfect flowers was measured. Thesedata were pooled with published data from an additional 51 speciesand used to determine size-dependent variations in (MG and MA)in terms of the hypothesis that the quotient of MG and MA exceeds1·0 for out-breeding (xenogamous) species and less than1·0 for in-breeding (autogamous) species. Ordinary leastsquare regression of the pooled data (n = 90) showed MG = 0·118M0·916P (r2 = 0·884) and MA = 0·186 M0·975P(r2 = 0·865), indicating that the biomass of the gynoeciumproportionally decrease as floral size increases. The exponentsof these regressions indicate that the ratio of gynoecial toandroecial biomass decreased with increasing floral size suchthat comparatively small flowers (MP < 0·0021 g) hadMG/MA > 1·0 (predicted for 'out-breeders') while comparativelylarger flowers (MP > 0·0021 g) had MG /MA < 1·0(predicted for 'in-breeders'). Thus, on average, the type ofbreeding system was a size-dependent phenomenon. To test whether the biomass of a floral organ-type is a legitimateindicator of gender reproductive effort, the biomass (in g)of stamen filaments Mm and anther sacs MAS of 39 species wasdetermined. Least square regression of these data showed MAS= 0·188 M0·854fil (r2 = 0·967), indicatingthat species with larger stamen filaments, on the average, boreproportionally smaller anther sacs and thereby cautioning againstthe uncritical use of the allocation of biomass to floral organ-typeas a strict gauge of gender-function investment. To determine whether the loss of one gender-function resultsin proportional reallocation of biomass to the remaining gender-function,the size-dependency of androecial and gynoecial biomass wasdetermined for a total of 33 perfect and imperfect flowers ofCucumis melo. Regression of the data obtained from perfect flowersyielded MA = 0·402 M1·47P (r2 = 0·898)and MG = 4·63 M1·36P (r2 = 0·842). SinceMG/MA M0·11P , the biomass allocation to the gynoeciumrelative to the androecium decreased with increasing floralsize. This result was consistent with the broad interpecificcomparison based on 90 species with perfect flowers . Regressionof the data for imperfect flowers yielded MA = 0·151M1·02P (r2 = 0·675) and MG = 4·68 M1·47P(r2 = 0·996), indicating a near allometric relation forthe androecium and a strong positive anisometry for the gynoecium.Thus, for flowers of comparable size, a loss of female genderobtains a modest to significant again in androecial biomasswhereas the loss of male gender yields only a slight increasein gynoecial biomass. Collectively, the results of these studies indicate that biomassallocation patterns are size-dependent phenomena whose complexitieshave been largely ignored in the literature.Copyright 1993,1999 Academic Press Allometry, floral biomass, reproduction  相似文献   
7.
Fifteen petioles and rachises from three dicotyledon species(Acer saccharum, A. negundo, and Aesculus hippocastanum), apalm (Chamaedorea erumpens), and a fern (Cyrtomium falcatum)were used to test the hypothesis of 'economy in design' in termsof the design principle of uniform strength, i.e. a beam inwhich the section modulus (Z) varies along beam-length (L) inthe same proportion as the bending moment (M). Such a beam is'economical' regarding the amount of material used in its 'construction'because each of its cross section has the minimum transversearea required to satisfy the conditions of strength. The extentto which the morphology of a petiole or rachis conformed withthis design principle was initially evaluated by normalizingZ (measured at a distance, x, from the tip of a petiole or rachis)with respect to the magnitude of Z measured at the base of thepetiole. The normalized values were plotted against normalizedpetiole-rachis length (x/L). The design principle was judgedto be demonstrated when such a plot was found to be isometric,i.e. when the plot had a slope of unity. This procedure wastested further by plotting M/Z vs. x/L for representative leavesof C. erumpens and A. saccharum, and judged adequate. The allometriesof all six simple/palmate leaves were found not agree with thedesign principle. The taperings of nine petioles and rachisesfrom pinnate leaves were consistent with the design principle.This was interpreted to provide circumstantial evidence for'economy in design' in the petioles of some pinnate leaves andevidence that the mechanical 'design' of the petioles of somesimple/palmate leaves differs substantially from that of pinnateleaves.Copyright 1993, 1999 Academic Press Leaf biomechanics, plant adaptation, petioles, rachises  相似文献   
8.
The influence of gravity on the size and mechanical properties of mature leaves on horizontal shoots and etiolated seedlings of Acer saccharum Marsh. (Aceraceae) was examined. Leaves were grouped into three categories regarding their location on shoots (dorsal or “top” T, lateral or “left/right” L/R, and ventral or “bottom” B). Young's modulus E, petiole length L, lamina surface area A and weight P, and the cross-sectional areas of different tissues within petioles were measured for each leaf and were found to be correlated with leaf location (T, L/R, and B): T leaves were smaller and had lower E than their B counterparts; the size and material properties of L/R leaves were intermediate between those of T and B leaves. In general, A, P, and E decreased from the base to the tip of shoots. In addition to anisophylly, the influence of gravity induced petiole bending and torsion and resulted in the horizontal planation of laminae. This was observed for field-grown mature plants and etiolated seedlings. Petiole bending and torsion were interpreted as gravimorphogenetic phenomena. Anatomically, L, E, and petiole deflection angle Fv measured from the vertical were highly correlated with the combined cross-sectional areas of phloem fibers and xylem in petioles of B leaves and when data from all leaves were pooled. It is tentatively advanced that the correlation of E with the transverse areas of phloem fibers and xylem is evidence that either the pattern or the extent of lignification of petiole tissues is influenced by petiole position with respect to gravity.  相似文献   
9.
Streptococcus mitis strain SK598, which represents a subgroup of biovar 1, possesses a unique variant of the C-polysaccharide found in the cell wall of all strains of Streptococcus pneumoniae and in some strains of S. mitis. This new variant lacks the choline methyl groups in contrast to the previously characterized forms of C-polysaccharide, which all contain one or two choline residues per repeat. The following structure of the repeating unit of the SK598 polysaccharide was established: where AAT is 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose. This structure is identical to the double choline-substituted form of C-polysaccharide, except that it is substituted with ethanolamine instead of choline. This extends the number of recognized C-polysaccharide variants to four.  相似文献   
10.
Chemical data are given forCooksonia, Rhynia, Zosterophyllum, Pseudosporochnus, Gosslingia,Crenaticaulis, Leclercqia, Tetraxylopteris, Oocampsa, andArchaeopteris, thus extending principal component analysis of multi-state and discrete characters to 27 Paleozoic plant taxa. Ordination patterns of these data suggest that while overlapping of major plant groups occurs, rhyniophytes, zosterophyllophytes, trimerophytes and other supra-generic taxa may be chemically characterized. The effects of heat (thermolysis) on organic constituents is shown to severely alter chemical profiles of plant taxa and is discussed as a thermometric tool. Taxonomic distancemeasures between plant groupings are suggested to be the result of both preand post-fossilization phenomena.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号