首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2019年   1篇
  2018年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2010年   2篇
排序方式: 共有10条查询结果,搜索用时 38 毫秒
1
1.
2.
3.
The polyamines spermine, spermidine and putrescine are ubiquitous cell components. These molecules are substrates of a class of enzymes that includes monoamine oxidases, diamine oxidases, polyamine oxidases and copper-containing amine oxidases. Amine oxidases are important because they contribute to regulate levels of mono- and polyamines. In tumors, polyamines and amine oxidases are increased as compared to normal tissues. Cytotoxicity induced by bovine serum amine oxidase (BSAO) and spermine is attributed to H2O2 and aldehydes produced by the reaction. This study demonstrated that multidrug-resistant (MDR) cancer cells (colon adenocarcinoma and melanoma) are significantly more sensitive than the corresponding wild-type (WT) ones to H2O2 and aldehydes, the products of BSAO-catalyzed oxidation of spermine. Transmission electron microscopy (TEM) observations showed major ultrastructural alterations of the mitochondria. These were more pronounced in MDR than in WT cells. Increasing the incubation temperature from 37 to 42°C enhances cytotoxicity in cells exposed to spermine metabolites. The combination BSAO/spermine prevents tumor growth, particularly well if the enzyme has been conjugated to a biocompatible hydrogel polymers. Since both wild-type and MDR cancer cells after pre-treatment with MDL 72527, a lysosomotropic compound, are sensitized to subsequent exposure to BSAO/spermine, it is conceivable that combined treatment with a lysosomotropic compound and BSAO/spermine would be effective against tumor cells. It is of interest to search for such novel compounds, which might be promising for application in a therapeutic setting.  相似文献   
4.
5.
Hutchinson–Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) are two laminopathies caused by mutations leading to cellular accumulation of prelamin A or one of its truncated forms, progerin. One proposed mechanism for the more severe symptoms in patients with RD compared with HGPS is that higher levels of farnesylated lamin A are produced in RD. Here, we show evidence in support of that hypothesis. Overexpression of the most common progeroid lamin A mutation (LMNA c.1824C>T, p.G608G) during skin development results in a severe phenotype, characterized by dry scaly skin. At postnatal day 5 (PD5), progeroid animals showed a hyperplastic epidermis, disorganized sebaceous glands and an acute inflammatory dermal response, also involving the hypodermal fat layer. PD5 animals also showed an upregulation of multiple inflammatory response genes and an activated NF‐kB target pathway. Careful analysis of the interfollicular epidermis showed aberrant expression of the lamin B receptor (LBR) in the suprabasal layer. Prolonged expression of LBR, in 14.06% of the cells, likely contributes to the observed arrest of skin development, clearly evident at PD4 when the skin had developed into single‐layer epithelium in the wild‐type animals while progeroid animals still had the multilayered appearance typical for skin at PD3. Suprabasal cells expressing LBR showed altered DNA distribution, suggesting the induction of gene expression changes. Despite the formation of a functional epidermal barrier and proven functionality of the gap junctions, progeroid animals displayed a greater rate of water loss as compared with wild‐type littermates and died within the first two postnatal weeks.  相似文献   
6.
Metabolism of polyamines spermidine and spermine, and their diamine precursor, putrescine, has been a target for antineoplastic therapy since these naturally occurring alkyl amines were found essential for normal mammalian cell growth. Intracellular polyamine concentrations are maintained at a cell type-specific set point through the coordinated and highly regulated interplay between biosynthesis, transport, and catabolism. A correlation between regulation of cell proliferation and polyamine metabolism is described. In particular, polyamine catabolism involves copper-containing amine oxidases and FAD-dependent polyamine oxidases. Several studies showed an important role of these enzymes in several developmental and disease-related processes in both animals and plants through a control on polyamine homeostasis in response to normal cellular signals, drug treatment, environmental and/or cellular stressors. The production of toxic aldehydes and reactive oxygen species, H(2)O(2) in particular, by these oxidases using extracellular and intracellular polyamines as substrates, suggests a mechanism by which the oxidases can be exploited as antineoplastic drug targets. This minireview summarizes recent advances on the physiological roles of polyamine catabolism in animals and plants in an attempt to highlight differences and similarities that may contribute to determine in detail the underlined mechanisms involved. This information could be useful in evaluating the possibility of this metabolic pathway as a target for new antiproliferative therapies in animals and stress tolerance strategies in plants.  相似文献   
7.
8.
Hutchinson-Gilford progeria syndrome (HGPS) is a genetic disease with multiple features that are suggestive of premature aging. Most patients with HGPS carry a mutation on one of their copies of the LMNA gene. The LMNA gene encodes the lamin A and lamin C proteins, which are the major proteins of the nuclear lamina. The organs of the cardiovascular system are amongst those that are most severely affected in HGPS, undergoing a progressive depletion of vascular smooth muscle cells, and most children with HGPS die in their early teens from cardio-vascular disease and other complications from atherosclerosis. In this study, we developed a transgenic mouse model based on the tet-ON system to increase the understanding of the molecular mechanisms leading to the most lethal aspect of HGPS. To induce the expression of the most common HGPS mutation, LMNA c.1824C>T; p.G608G, in the vascular smooth muscle cells of the aortic arch and thoracic aorta, we used the previously described reverse tetracycline-controlled transactivator, sm22α-rtTA. However, the expression of the reverse sm22α-transactivator was barely detectable in the arteries, and this low level of expression was not sufficient to induce the expression of the target human lamin A minigene. The results from this study are important because they suggest caution during the use of previously functional transgenic animal models and emphasize the importance of assessing transgene expression over time.  相似文献   
9.
Mitochondrial permeability transition (MPT) is correlated with the opening of a nonspecific pore, the so-called transition pore, that triggers bidirectional traffic of inorganic solutes and metabolites across the mitochondrial membrane. This phenomenon is caused by supraphysiological Ca(2+) concentrations and by other compounds leading to oxidative stress, while cyclosporin A, ADP, bongkrekic acid, antioxidant agents and naturally occurring polyamines strongly inhibit it. The effects of polyamines, including the diamine agmatine, have been widely studied in several types of mitochondria. The effects of monoamines on MPT have to date, been less well-studied, even if they are involved in a variety of neurological and neuroendocrine processes. This study shows that in rat liver mitochondria (RLM), monoamines such as tyramine, serotonin and dopamine amplify the swelling induced by calcium, and increase the oxidation of thiol groups and the production of hydrogen peroxide, effects that are counteracted by the above-mentioned inhibitors. In rat brain mitochondria (RBM), the monoamines do not amplify calcium-induced swelling, even if they demonstrate increases in the extent of oxidation of thiol groups and hydrogen peroxide production. In these mitochondria, the antioxidants are not at all or scarcely effective in suppressing mitochondrial swelling. In conclusion, we hypothesize that different mechanisms induce the MPT in the two different types of mitochondria evaluated. Calcium and monoamines induce oxidative stress in RLM, which in turn appears to induce and amplify MPT. This process is not apparent in RBM, where MPT seems resistant to oxidative stress.  相似文献   
10.
Polyamines: fundamental characters in chemistry and biology   总被引:1,自引:0,他引:1  
Polyamines are small cationic molecules required for cellular proliferation and are detected at higher concentrations in most tumour tissues, compared to normal tissues. Agmatine (AGM), a biogenic amine, is able to arrest proliferation in cell lines by depleting intracellular polyamine levels. It enters mammalian cells via the polyamine transport system. Agmatine is able to induce oxidative stress in mitochondria at low concentrations (10 or 100 μM), while at higher concentrations (e.g. 1–2 mM) it does not affect mitochondrial respiration and is ineffective in inducing any oxidative stress. As this effect is strictly correlated with the mitochondrial permeability transition induction and the triggering of the pro-apoptotic pathway, AGM may be considered as a regulator of this type of cell death. Furthermore, polyamine transport is positively correlated with the rate of cellular proliferation. By increasing the expression of antizyme, a protein that inhibits polyamine biosynthesis and transport, AGM also exhibits a regulatory effect on cell proliferation. Methylglyoxal bis(guanylhydrazone) (MGBG), a competitive inhibitor of S-adenosyl-l-methionine decarboxylase, displaying anticancer activity, is a structural analogue of the natural polyamine spermidine. MGBG has been extensively studied, preclinically as well as clinically, and its anticancer activity has been attributed to the inhibition of polyamine biosynthesis and also to its effect on mitochondrial function. Numerous findings have suggested that MGBG might be used as a chemotherapeutic agent against cancer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号