首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   6篇
  40篇
  2021年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2008年   3篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1992年   2篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
Shells of the bivalve Arctica islandica are used to reconstruct paleo-environmental conditions (e.g. temperature) via biogeochemical proxies, i.e. biogenic components that are related closely to environmental parameters at the time of shell formation. Several studies have shown that proxies like element and isotope-ratios can be affected by shell growth and microstructure. Thus it is essential to evaluate the impact of changing environmental parameters such as high pCO2 and consequent changes in carbonate chemistry on shell properties to validate these biogeochemical proxies for a wider range of environmental conditions. Growth experiments with Arctica islandica from the Western Baltic Sea kept under different pCO2 levels (from 380 to 1120 µatm) indicate no affect of elevated pCO2 on shell growth or crystal microstructure, indicating that A. islandica shows an adaptation to a wider range of pCO2 levels than reported for other species. Accordingly, proxy information derived from A. islandica shells of this region contains no pCO2 related bias.  相似文献   
2.
In C. elegans, rhythmic defecation is timed by oscillatory Ca(2+) signaling in the intestine [1-5]. Here, by using fluorescent biosensors in live, unrestrained worms, we show that intestinal pH also oscillates during defecation and that transepithelial proton movement is essential for defecation signaling. The intestinal cytoplasm is acidified by proton influx from the lumen during defecation. Acidification is predicted to trigger Na(+)/H(+) exchange activity and subsequent proton efflux. The Na(+)/H(+) exchanger NHX-7 (PBO-4) extrudes protons across the basolateral membrane and is necessary for both acute acidification of the pseudocoelom and for strong contractions of the posterior body wall muscles during defecation. This suggests that secreted protons transmit a signal between the intestine and muscle. NHX-2 is a second Na(+)/H(+) exchanger whose distribution is limited to the apical membranes facing the intestinal lumen. RNA interference of nhx-2 reduces the basal pH of the intestinal cells, reduces the rate of proton movement between the lumen and the cytoplasm during defecation, and extends the defecation period. Thus, the cell may integrate both pH and calcium signals to regulate defecation timing. Overall, these results establish the defecation cycle as a model system for studying transepithelial proton flux in tissues that maintain systemic acid-base balance.  相似文献   
3.
Na+/H+ exchangers are involved in cell volume regulation, fluid secretion and absorption, and pH homeostasis. NHX-2 is a Caenorhabditis elegans Na+/H+ exchanger expressed exclusively at the apical membrane of intestinal epithelial cells. The inactivation of various intestinal nutrient transport proteins has been shown previously to influence aging via metabolic potential and a mechanism resembling caloric restriction. We report here a functional coupling of NHX-2 activity with nutrient uptake that results in long lived worms. Gene inactivation of nhx-2 by RNAi led to a loss of fat stores in the intestine and a 40% increase in longevity. The NHX-2 protein was coincidentally expressed with OPT-2, an oligopeptide transporter that is driven by a transmembrane proton gradient and that is also known to be involved in fat accumulation. Gene inactivation of opt-2 led to a phenotype resembling that of nhx-2, although not as severe. In order to explore this potential functional interaction, we combined RNA interference with a genetically encoded, fluorescence-based reagent to measure intestinal intracellular pH (pHi) in live worms under physiological conditions. Our results suggest first that OPT-2 is the main dipeptide uptake pathway in the nematode intestine, and second that dipeptide uptake results in intestinal cell acidification, and finally that recovery following dipeptide-induced acidification is normally a function of NHX-2. The loss of NHX-2 protein results in decreased steady-state intestinal cell pHi, and we hypothesize that this change perturbs proton-coupled nutrient uptake processes such as performed by OPT-2. Our data demonstrate a functional role for a Na+/H+ exchanger in nutrient absorption in vivo and lays the groundwork for examining integrated acid-base physiology in a non-mammalian model organism.  相似文献   
4.
Six ClC-type chloride channel genes have been identified in Caenorhabditis elegans, termed clh-1 through clh-6. cDNA sequences from these genes suggest that clh-2, clh-3, and clh-4 may code for multiple channel variants, bringing the total to at least nine channel types in this nematode. Promoter-driven green fluorescent protein (GFP) expression in transgenic animals indicates that the protein CLH-5 is expressed ubiquitously, CLH-6 is expressed mainly in nonneuronal cells, and the remaining isoforms vary from those restricted to a single cell to those expressed in over a dozen cells of the nematode. In an Sf9 cell expression system, recombinant CLH-2b, CLH-4b, and CLH-5 did not form functional plasma membrane channels. In contrast, both CLH-1 and CLH-3b produced strong, inward-rectifying chloride currents similar to those arising from mammalian ClC2, but which operate over different voltage ranges. Our demonstration of multiple CLH protein variants and comparison of expression patterns among the clh gene family provides a framework, in combination with the electrical properties of the recombinant channels, to further examine the physiology and cell-specific role each isoform plays in this simple model system.  相似文献   
5.
Three broad classes of Ca(2+)-activated potassium channels are defined by their respective single channel conductances, i.e. the small, intermediate, and large conductance channels, often termed the SK, IK, and BK channels, respectively. SK channels are likely encoded by three genes, Kcnn1-3, whereas IK and most BK channels are most likely products of the Kcnn4 and Slo (Kcnma1) genes, respectively. IK channels are prominently expressed in cells of the hematopoietic system and in organs involved in salt and fluid transport, including the colon, lung, and salivary glands. IK channels likely underlie the K(+) permeability in red blood cells that is associated with water loss, which is a contributing factor in the pathophysiology of sickle cell disease. IK channels are also involved in the activation of T lymphocytes. The fluid-secreting acinar cells of the parotid gland express both IK and BK channels, raising questions about their particular respective roles. To test the physiological roles of channels encoded by the Kcnn4 gene, we constructed a mouse deficient in its expression. Kcnn4 null mice were of normal appearance and fertility, their parotid acinar cells expressed no IK channels, and their red blood cells lost K(+) permeability. The volume regulation of T lymphocytes and erythrocytes was severely impaired in Kcnn4 null mice but was normal in parotid acinar cells. Despite the loss of IK channels, activated fluid secretion from parotid glands was normal. These results confirm that IK channels in red blood cells, T lymphocytes, and parotid acinar cells are indeed encoded by the Kcnn4 gene. The role of these channels in water movement and the subsequent volume changes in red blood cells and T lymphocytes is also confirmed. Surprisingly, Kcnn4 channels appear to play no required role in fluid secretion and regulatory volume decrease in the parotid gland.  相似文献   
6.
The Saccharomyces cerevisiae mutant ref2-1 (REF = RNA end formation) was originally identified by a genetic strategy predicted to detect decreases in the use of a CYC1 poly(A) site interposed within the intron of an ACT1-HIS4 fusion reporter gene. Direct RNA analysis now proves this effect and also demonstrates the trans action of the REF2 gene product on cryptic poly(A) sites located within the coding region of a plasmid-borne ACT1-lacZ gene. Despite impaired growth of ref2 strains, possibly because of a general defect in the efficiency of mRNA 3'-end processing, the steady-state characteristics of a variety of normal cellular mRNAs remain unaffected. Sequencing of the complementing gene predicts the Ref2p product to be a novel, basic protein of 429 amino acids (M(r), 48,000) with a high-level lysine/serine content and some unusual features. Analysis in vitro, with a number of defined RNA substrates, confirms that efficient use of weak poly(A) sites requires Ref2p: endonucleolytic cleavage is carried out accurately but at significantly lower rates in extracts prepared from delta ref2 cells. The addition of purified, epitope-tagged Ref2p (Ref2pF) reestablishes wild-type levels of activity in these extracts, demonstrating direct involvement of this protein in the cleavage step of 3' mRNA processing. Together with the RNA-binding characteristics of Ref2pF in vitro, our results support an important contributing role for the REF2 locus in 3'-end processing. As the first gene genetically identified to participate in mRNA 3'-end maturation prior to the final polyadenylation step, REF2 provides an ideal starting point for identifying related genes in this event.  相似文献   
7.
He L  Denton J  Nehrke K  Strange K 《Biophysical journal》2006,90(10):3570-3581
CLH-3a and CLH-3b are Caenorhabditis elegans ClC channel splice variants that exhibit striking differences in voltage, Cl(-), and H(+) sensitivity. The major primary structure differences between the channels include a 71 amino acid CLH-3a N-terminal extension and a 270 amino acid extension of the CLH-3b C-terminus. Deletion of the CLH-3a N-terminus or generation of a CLH-3a/b chimera has no effect on channel gating. In contrast, deletion of a 169 amino acid C-terminal CLH-3b splice insert or deletion of the last 11 amino acids of cystathionine-beta-synthase domain 1 gives rise to functional properties identical to those of CLH-3a. Voltage-, Cl(-)-, and H(+)-dependent gating of both channels are lost when their glutamate gates are mutated to alanine. Glutamate gate cysteine mutants exhibit similar degrees of inhibition by MTSET, but the inhibition time constant of CLH-3b is sevenfold greater than that of CLH-3a. Differences in MTSET inhibition are reversed by deletion of the same cytoplasmic C-terminal regions that alter CLH-3b gating. Our results indicate that splice variation of the CLH-3b cytoplasmic C-terminus alters extracellular structure and suggest that differences in the conformation of the outer pore vestibule and associated glutamate gate may account for differences in CLH-3a and CLH-3b gating.  相似文献   
8.
CLH-3a and CLH-3b are swelling-activated, alternatively spliced Caenorhabditis elegans ClC anion channels that have identical membrane domains but exhibit marked differences in their cytoplasmic NH2 and COOH termini. The major differences include a 71-amino acid CLH-3a NH2-terminal extension and a 270-amino acid extension of the CLH-3b COOH terminus. Splice variation gives rise to channels with striking differences in voltage, pH, and Cl sensitivity. On the basis of structural and functional insights gained from crystal structures of bacterial ClCs, we suggested previously that these functional differences are due to alternative splicing of the COOH terminus that may change the accessibility and/or function of pore-associated ion-binding sites. We recently identified a mutant worm strain harboring a COOH-terminal deletion mutation in the clh-3 gene. This mutation removes 101 COOH-terminal amino acids unique to CLH-3b and an additional 64 upstream amino acids shared by both channels. CLH-3b is expressed in the worm oocyte, which allowed us to characterize the mutant channel, CLH-3bC, in its native cellular environment. CLH-3bC exhibits altered voltage-dependent gating as well as pH and Cl sensitivity that resemble those of CLH-3a. This mutation also alters channel inhibition by Zn2+, prevents ATP depletion-induced activation, and dramatically reduces volume sensitivity. These results suggest that the deleted COOH-terminal region of CLH-3bC functions to modulate channel sensitivity to voltage and extracellular ions. This region also likely plays a role in channel regulation and cell volume sensitivity. Our findings contribute to a growing body of evidence indicating that cytoplasmic domains play key roles in the gating and regulation of eukaryotic ClCs. chloride; cell volume; voltage-gated anion channel  相似文献   
9.
We used molecular biological and patch-clamp techniques to identify the Ca(2+)-activated K(+) channel genes in mouse parotid acinar cells. Two types of K(+) channels were activated by intracellular Ca(2+) with single-channel conductance values of 22 and 140 pS (in 135 mM external K(+)), consistent with the intermediate and maxi-K classes of Ca(2+)-activated K(+) channels, typified by the mIK1 (Kcnn4) and mSlo (Kcnma1) genes, respectively. The presence of mIK1 mRNA was established in acinar cells by in situ hybridization. The electrophysiological and pharmacological properties of heterologously expressed mIK1 channels matched those of the native current; thus the native, smaller conductance channel is likely derived from the mIK1 gene. We found that parotid acinar cells express a single, uncommon splice variant of the mSlo gene and that heterologously expressed channels of this Slo variant had a single-channel conductance indistinguishable from that of the native, large-conductance channel. However, the sensitivity of this expressed Slo variant to the scorpion toxin iberiotoxin was considerably different from that of the native current. RT-PCR analysis revealed the presence of two mSlo beta-subunits (Kcnmb1 and Kcnmb4) in parotid tissue. Comparison of the iberiotoxin sensitivity of the native current with that of parotid mSlo expressed with each beta-subunit in isolation and measurements of the iberiotoxin sensitivity of currents in cells from beta(1) knockout mice suggest that parotid acinar cells contain approximately equal numbers of homotetrameric channel proteins from the parotid variant of the Slo gene and heteromeric proteins composed of the parotid Slo variant in combination with the beta(4)-subunit.  相似文献   
10.
Ischemic preconditioning (IPC) is an evolutionarily conserved endogenous mechanism whereby short periods of non-lethal exposure to hypoxia alleviate damage caused by subsequent ischemia reperfusion (IR). Pharmacologic targeting has suggested that the mitochondrial ATP-sensitive potassium channel (mKATP) is central to IPC signaling, despite its lack of molecular identity. Here, we report that isolated Caenorhabditis elegans mitochondria have a KATP channel with the same physiologic and pharmacologic characteristics as the vertebrate channel. Since C. elegans also exhibit IPC, our observations provide a framework to study the role of mKATP in IR injury in a genetic model organism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号