首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  国内免费   1篇
  2022年   1篇
  2018年   1篇
  2011年   4篇
  2009年   1篇
  2006年   1篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
V G Nare?ko 《Ontogenez》1988,19(6):601-605
Changes in the myosin isozyme spectrum were studied in the loach developing skeletal muscle. It was shown using disk-electrophoresis in polyacrylamide gel and peptide mapping that light and heavy myosin chains from the larval muscles, as well as from the red and white muscle of adult fish differ from each other. Forms of myosin light and heavy chains were found which were characteristic of the larval muscle only.  相似文献   
2.
The trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl]pyridine (compound 1) has in vivo activity against the apicomplexan parasites Toxoplasma gondii and Eimeria tenella in animal models. The presumptive molecular target of this compound in E. tenella is cyclic GMP-dependent protein kinase (PKG). Native PKG purified from T. gondii has kinetic and pharmacologic properties similar to those of the E. tenella homologue, and both have been functionally expressed as recombinant proteins in T. gondii. Computer modeling of parasite PKG was used to predict catalytic site amino acid residues that interact with compound 1. The recombinant laboratory-generated mutants T. gondii PKG T761Q or T761M and the analogous E. tenella T770 alleles have reduced binding affinity for, and are not inhibited by, compound 1. By all other criteria, PKG with this class of catalytic site substitution is indistinguishable from wild-type enzyme. A genetic disruption of T. gondii PKG can only be achieved if a complementing copy of PKG is provided in trans, arguing that PKG is an essential protein. Strains of T. gondii, disrupted at the genomic PKG locus and dependent upon the T. gondii T761-substituted PKGs, are as virulent as wild type in mice. However, unlike mice infected with wild-type T. gondii that are cured by compound 1, mice infected with the laboratory-generated strains of T. gondii do not respond to treatment. We conclude that PKG represents the primary molecular target responsible for the antiparasitic efficacy of compound 1.  相似文献   
3.
Novel l-valinate amide benzoxaboroles and analogues were designed and synthesized for a structure-activity-relationship (SAR) investigation to optimize the growth inhibitory activity against Trypanosoma congolense (T. congolense) and Trypanosoma vivax (T. vivax) parasites. The study identified 4-fluorobenzyl (1-hydroxy-7-methyl-1,3-dihydrobenzo[c][1,2]oxaborole-6-carbonyl)-l-valinate (5, AN11736), which showed IC50 values of 0.15?nM against T. congolense and 1.3?nM against T. vivax, and demonstrated 100% efficacy with a single dose of 10?mg/kg against both T. congolense and T. vivax in mouse models of infection (IP dosing) and in the target animal, cattle, dosed intramuscularly. AN11736 has been advanced to early development studies.  相似文献   
4.
Casein kinase 1 (CK1) is a family of multifunctional Ser/Thr protein kinases that are ubiquitous in eukaryotic cells. Recent studies have demonstrated the existence of, and role for, CK1 in protozoan parasites such as Leishmania, Plasmodium and Trypanosoma. The value of protein kinases as potential drug targets in protozoa is evidenced by the successful exploitation of cyclic guanosine monophosphate-dependent protein kinase (PKG) with selective tri-substituted pyrrole and imidazopyridine inhibitors. These compounds exhibit in vivo efficacy against Eimeria tenella in chickens and Toxoplasma gondii in mice. We now report that both of these protein kinase inhibitor classes inhibit the growth of Leishmania major promastigotes and Trypanosoma brucei bloodstream forms in vitro. Genome informatics predicts that neither of these trypanosomatids codes for a PKG orthologue. Biochemical studies have led to the unexpected discovery that an isoform of CK1 represents the primary target of the pyrrole and imidazopyridine kinase inhibitors in these organisms. CK1 from extracts of L. major promastigotes co-fractionated with [(3)H]imidazopyridine binding activity. Further purification of CK1 activity from L. major and characterization via liquid chromatography coupled tandem mass spectrometry identified CK1 isoform 2 as the specific parasite protein inhibited by imidazopyridines. L. major CK1 isoform 2 expressed as a recombinant protein in Escherichia coli displayed biochemical and inhibition characteristics similar to those of the purified native enzyme. The results described here warrant further evaluation of the activity of these kinase inhibitors against mammalian stage Leishmania parasites in vitro and in animal models of infection, as well as studies to genetically validate CK1 as a therapeutic target in trypanosomatid parasites.  相似文献   
5.
Modification of the structure of trypanosomal AdoMetDC inhibitor 1 (MDL73811) resulted in the identification of a new inhibitor 7a, which features a methyl substituent at the 8-position. Compound 7a exhibits improved potencies against both the trypanosomal AdoMetDC enzyme and parasites, and better blood brain barrier penetration than 1.  相似文献   
6.
The activity of glutathione S-transferase (GST) decreased progressively in Schistosoma mansoni from mice treated with oltipraz (OPZ). However, the peroxidase activity of GST (selenium-independent) and selenium-dependent glutathione peroxidase was not affected by OPZ treatment. Purification and quantification of GST from worms after OPZ treatment indicated that the decrease in enzyme activity was greater than could be accounted for by the decrease in GST protein content. SDS-polyacrylamide gel electrophoresis followed by Western blot analysis with GST isoenzyme specific antisera revealed a slight decrease in the quantity of both 26 and 28 kDa GSTs. Fractionation of cytosolic GSTs from male S. mansoni by chromatofocusing resolved three major isoenzymes (SmI, II and III) and a minor form which eluted first from the column. SmI, II and III all had a molecular weight of about 28 kDa on SDS-polyacrylamide gel electrophoresis. However, on electrophoresis in the absence of SDS, the three GST forms exhibited different mobilities. The pattern of SmI, II and III was similar in untreated and OPZ-treated worms, but the activities of the isoenzymes from treated worms were lower. The results suggest that OPZ interacts with the GST isoenzymes SmI, II and III in a similar manner; thus, the effects are not isoenzyme specific. Taken together, these results suggest that OPZ and/or its metabolites interact directly with GST resulting in inhibition of activity and reduction in total enzyme protein. This mechanism may be important in the antischistosomal action of OPZ.  相似文献   
7.
Measurement of histone deacetylase activity is usually accomplished by incubation of the enzyme(s) with acetate-radiolabeled histones or synthetic peptides based on histone sequences, followed by extraction and quantification of released radiolabeled acetic acid. Consequently, this assay is both time consuming and extremely limiting when large numbers of samples are involved. We have now developed a simple, two-step histone deacetylase assay that is based on the scintillation proximity assay (SPA) principle. A biotinylated [3H]acetyl histone H4 peptide substrate was synthesized and shown to generate a radioactive signal upon binding to streptavidin-coated SPA beads. Incubation of biotinylated [3H]acetyl peptide with HeLa nuclear extract (source of histone deacetylase) resulted in a time- and protein-dependent decrease in the SPA signal, providing a measure of enzyme activity. The histone deacetylase-mediated decrease in SPA counts was accompanied by a proportional appearance in free 3H-labeled acetate in the assay mixture. Histone deacetylase activity measured by SPA was concordant with that determined via the traditional ethyl acetate extraction procedure. Furthermore, a broad range of histone deacetylase inhibitors was demonstrated to have comparable effects on the catalytic activity of the HeLa nuclei enzyme using both assays. The histone deacetylase SPA system described here should be readily applicable for automated high-throughput screening and therefore facilitate the discovery of new inhibitors of histone deacetylases.  相似文献   
8.
The mannitol cycle is a metabolic branch of the glycolytic pathway found in Eimeria tenella. In this paper, we describe the biosynthesis and consumption of mannitol during parasite development. Low micromolar levels of mannitol were detected in all of the asexual stages and mannitol production increased sharply during the sexual phase of the life cycle. Unsporulated oocysts had high mannitol content (300 mM or 25% of the oocyst mass). Mannitol-1-phosphate dehydrogenase (M1PDH), the first committed step of the mannitol cycle, was also elevated in sexual stages and this coincides with mannitol levels. Approximately 90% of the mannitol present in unsporulated oocysts was consumed in the first 15 hr of sporulation, and levels continued to drop until the sporulation process was complete at approximately 35 hr. Thus, mannitol appears to be the "fuel" for sporulation during the vegetative stage of the parasite life cycle. Evaluation of oocyst extracts from 6 additional Eimeria species for mannitol content and the presence of M1PDH indicated that the mannitol cycle was broadly present in this genus. This finding combined with the lack of mannitol metabolism in higher eukaryotes makes this pathway an attractive chemotherapeutic target.  相似文献   
9.
Unsporulated oocysts of the protozoan parasite Eimeria tenella contain high levels of mannitol, which is thought to be the principal energy source for the process of sporulation. Biosynthesis and utilization of this sugar alcohol occurs via a metabolic pathway known as the mannitol cycle. Here, results are presented that suggest that 3-nitrophenyl disulfide (nitrophenide, Megasul), an anticoccidial drug commercially used in the 1950s, inhibits mannitol-1-phosphate dehydrogenase (M1PDH), which catalyzes the committed enzymatic step in the mannitol cycle. Treatment of E. tenella-infected chickens with nitrophenide resulted in a 90% reduction in oocyst shedding. The remaining oocysts displayed significant morphological abnormalities and were largely incapable of further development. Nitrophenide treatment did not affect parasite asexual reproduction, suggesting specificity for the sexual stage of the life cycle. Isolated oocysts from chickens treated with nitrophenide exhibited a dose-dependent reduction in mannitol, suggesting in vivo inhibition of parasite mannitol biosynthesis. Nitrophenide-mediated inhibition of MIPDH was observed in vitro using purified native enzyme. Moreover, MIPDH activity immunoprecipitated from E. tenella-infected cecal tissues was significantly lower in nitrophenide-treated compared with untreated chickens. Western blot analysis and immunohistochemistry showed that parasites from nitrophenide-treated and untreated chickens contained similar enzyme levels. These data suggest that nitrophenide blocks parasite development at the sexual stages by targeting M1PDH. Thus, targeting of the mannitol cycle with drugs could provide an avenue for controlling the spread of E. tenella in commercial production facilities by preventing oocyst shedding.  相似文献   
10.
A series of 2,4-diaminopyrimidines was investigated and compounds were found to have in vivo efficacy against Trypanosoma brucei in an acute mouse model. However, in vitro permeability data suggested the 2,4-diaminopyrimidenes would have poor permeability through the blood brain barrier. Consequently a series of 4-desamino analogs were synthesized and found to have improved in vitro permeability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号