首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  2022年   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有25条查询结果,搜索用时 0 毫秒
1.
The pathophysiology of COVID-19 is an enigma with its severity often determined by the extent of coagulopathy. Several regulatory pathways targeted by the SARS-CoV-2 include the renin-angiotensin system, von Willebrand Factor, and most importantly, the complement pathway. This article discusses these pathways to help design potential future therapies.  相似文献   
2.
3.
4.
The hallmark of acute lung injury (ALI) is the influx of proinflammatory cytokines into lung tissue and alveolar permeability that ultimately leads to pulmonary edema. However, the mechanisms involved in inflammatory cytokine production and alveolar permeability are unclear. Recent studies suggest that excessive production of ceramide has clinical relevance as a mediator of pulmonary edema and ALI. Our earlier studies indicate that the activation of inflammasome promotes the processing and secretion of proinflammatory cytokines and causes alveolar permeability in ALI. However, the role of ceramide in inflammasome activation and the underlying mechanism in relation to alveolar permeability is not known. We hypothesized that ceramide activates the inflammasome and causes inflammatory cytokine production and alveolar epithelial permeability. To test this hypothesis, we analyzed the lung ceramide levels during hyperoxic ALI in mice. The effect of ceramide on activation of inflammasome and production of inflammatory cytokine was assessed in primary mouse alveolar macrophages and THP-1 cells. Alveolar transepithelial permeability was determined in alveolar epithelial type-II cells (AT-II) and THP-1 co-cultures. Our results reveal that ceramide causes inflammasome activation, induction of caspase-1, IL-1β cleavage, and release of proinflammatory cytokines. In addition, ceramide further induces alveolar epithelial permeability. Short-hairpin RNA silencing of inflammasome components abrogated ceramide-induced secretion of proinflammatory cytokines in vitro. Inflammasome silencing abolishes ceramide-induced alveolar epithelial permeability in AT-II. Collectively, our results demonstrate for the first time that ceramide-induced secretion of proinflammatory cytokines and alveolar epithelial permeability occurs though inflammasome activation.  相似文献   
5.
6.
Pulmonary Arterial Hypertension (PAH) is a progressive devastating disease characterized by excessive proliferation of the Pulmonary Arterial Smooth Muscle Cells (PASMCs). Studies suggest that PAH and cancers share an apoptosis-resistant state featuring excessive cell proliferation. MicroRNA-206 (miR-206) is known to regulate proliferation and is implicated in various types of cancers. However, the role of miR-206 in PAH has not been studied. In this study, it is hypothesized that miR-206 could play a role in the proliferation of PASMCs. In the present study, the expression patterns of miR-206 were investigated in normal and hypertensive mouse PASMCs. The effects of miR-206 in modulating cell proliferation, apoptosis and smooth muscle cell markers in human pulmonary artery smooth muscle cells (hPASMCs) were investigated in vitro. miR-206 expression in mouse PASMCs was correlated with an increase in right ventricular systolic pressure. Reduction of miR-206 levels in hPASMCs causes increased proliferation and reduced apoptosis and these effects were reversed by the overexpression of miR-206. miR-206 over expression also increased the levels of smooth muscle cell differentiation markers α-smooth muscle actin and calponin implicating its importance in the differentiation of SMCs. miR-206 overexpression down regulated Notch-3 expression, which is key a factor in PAH development. These results suggest that miR-206 is a potential regulator of proliferation, apoptosis and differentiation of PASMCs, and that it could be used as a novel treatment strategy in PAH.  相似文献   
7.
To determine how ligand-receptor interaction is affected by the charges of the amino acids at position 2 of the ligands and position 297 of the AT2 receptor, we generated the Asp297Lys mutant of AT2 and a ligand SarAsp2Ile. Asp297Lys mutant lost affinity to Ang II and SarIle however retained partial affinity to 125I-CGP42112A. The SarAsp2Ile had high affinity to Asp297Lys (IC503.5nM) and partial affinity to the AT2 (IC5015nM). Therefore, not only the charge, but also the length of the side arms of the amino acids at position 2 of the ligand and position 297 of the receptor affect their interaction.  相似文献   
8.
9.
Polarized distribution of chloride channels on the plasma membrane of epithelial cells is required for fluid transport across the epithelium of fluid-transporting organs. Ionotropic gamma-aminobutyric acid receptors are primary ligand-gated chloride channels that mediate inhibitory neurotransmission. Traditionally, these receptors are not considered to be contributors to fluid transport. Here, we report a novel function of gamma-aminobutyric acid receptors involving alveolar fluid homeostasis in adult lungs. We demonstrated the expression of functional ionotropic gamma-aminobutyric acid receptors on the apical plasma membrane of alveolar epithelial type II cells. gamma-Aminobutyric acid significantly increased chloride efflux in the isolated type II cells and inhibited apical to basolateral chloride transport on type II cell monolayers. Reduction of the gamma-aminobutyric acid receptor pi subunit using RNA interference abolished the gamma-aminobutyric acid-mediated chloride transport. In intact rat lungs, gamma-aminobutyric acid inhibited both basal and beta agonist-stimulated alveolar fluid clearance. Thus, we provide molecular and pharmacological evidence that ionotropic gamma-aminobutyric acid receptors contribute to fluid transport in the lung via luminal secretion of chloride. This finding may have the potential to develop clinical approaches for pulmonary diseases involving abnormal fluid dynamics.  相似文献   
10.
Kumar V  Knowle D  Gavini N  Pulakat L 《FEBS letters》2002,532(3):379-386
Increase in the intracellular inositol triphosphate (IP3) levels in Xenopus oocytes in response to expression and activation of rat angiotensin II (Ang II) receptor AT1 was inhibited by co-expression of rat AT2 receptor. To identify which region of the AT2 was involved in this inhibition, ability of three AT2 mutants to abolish this inhibition was analyzed. Deletion of the C-terminus of the AT2 did not abolish this inhibition. Replacing Ile249 in the third intracellular loop (3rd ICL) of the AT2 with proline, corresponding amino acid in the AT1, in the mutant M6, resulted in slightly reduced affinity to [125I]Ang II (K(d)=0.259 nM), however, did not abolish the inhibition. In contrast, replacing eight more amino acids in the 3rd ICL of the AT2 (at positions 241-244, 250-251 and 255-256) with that of the AT1 in the mutant M8, not only increased the affinity of the AT2 receptor to [125I]Ang II (K(d)=0.038 nM) but also abolished AT2-mediated inhibition. Interestingly, activation of the M8 by Ang II binding also resulted in increase in the intracellular IP(3) levels in oocytes. These results imply that the region of the 3rd ICL of AT2 spanning amino acids 241-256 is sufficient for the AT2-mediated inhibition of AT1-stimulated IP3 generation. Moreover, these nine mutations are also sufficient to render the AT2 with the ability to activate phospholipase C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号