首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   18篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   4篇
  2015年   8篇
  2014年   11篇
  2013年   16篇
  2012年   13篇
  2011年   14篇
  2010年   9篇
  2009年   9篇
  2008年   9篇
  2007年   18篇
  2006年   7篇
  2005年   8篇
  2004年   8篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   5篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1971年   1篇
排序方式: 共有226条查询结果,搜索用时 265 毫秒
1.
Polycomb group (PcG) genes of Drosophila are negative regulators of homeotic gene expression required for maintenance of determination. Sequence similarity between Polycomb and Su(var)205 led to the suggestion that PcG genes and modifiers of position-effect variegation (PEV) might function analogously in the establishment of chromatin structure. If PcG proteins participate directly in the same process that leads to PEV, PcG mutations should suppress PEV. We show that mutations in E(Pc), an unusual member of the PcG, suppress PEV of four variegating rearrangements: In(l)wm4, B(SV), T(2;3)Sb(V) and In(2R)bw(VDe2). Using reversion of a Pelement insertion, deficiency mapping, and recombination mapping as criteria, homeotic effects and suppression of PEV associated with E(Pc) co-map. Asx is an enhancer of PEV, whereas nine other PcG loci do not affect PEV. These results support the conclusion that there are fewer similarities between PcG genes and modifiers of PEV than previously supposed. However, E(Pc) appears to be an important link between the two groups. We discuss why Asx might act as an enhancer of PEV.  相似文献   
2.
The kinetics of uptake, retention, and radiotoxicity of 125IUdR have been studied in proliferating mammalian cells in culture. The radioactivity incorporated into the DNA is directly proportional to the duration of incubation and to the extracellular concentration of 125I. The rate of proliferation of cells is related to the intracellular radioactive concentration and is markedly reduced at medium concentrations greater than or equal to 0.1 mu Ci/ml. At 37% survival the high LET type cell survival curve is characterized by an uptake of 0.035 pCi/cell, and the cumulated mean lethal dose to the cell nucleus is about 80 rad compared to 580 rad of X-ray dose for this cell line. The strong cytocidal effects of the decay of 125I correlate with localized irradiation of the DNA by the low energy Auger electrons.  相似文献   
3.
Exposure of rat glioma C6 cells to the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) caused an activation of protein kinase C wherein the enzyme rapidly became membrane-bound (T 1/2 of 15 min). This translocation of protein kinase C from cytosol to membrane was followed by a sequestration of cell surface beta-adrenergic receptors and a loss of isoproterenol-stimulated adenylate cyclase activity. We had reported previously that prior exposure of rat glioma cells to concanavalin A prevents the TPA-mediated sequestration of receptors and desensitization of adenylate cyclase (Kassis et al., 1985). We now show that the concanavalin A treatment also prevents the translocation and activation of protein kinase C. These results are further evidence that in the TPA-treated cells, sequestration of beta-adrenergic receptors is mediated by membrane-bound protein kinase C.  相似文献   
4.
The engrailed (en) gene functions throughout Drosophila development and is expressed in a succession of intricate spatial patterns as development proceeds. Normal en function relies on an extremely large cis-acting regulatory region (70 kilobases). We are using evolutionary conservation to help identify en sequences important in regulating patterned expression. Sequence comparison of 2.6 kilobases upstream of the en coding region of D. melanogaster and D. virilis (estimated divergence time, 60 million years) showed that 30% of this DNA occurs in islands of near perfect sequence conservation. One of these conserved islands contains binding sites for homeodomain-containing proteins. It has been shown genetically that homeodomain-containing proteins regulate en expression. Our data suggested that this regulation may be direct. The remaining conserved islands may contain binding sites for other regulatory proteins.  相似文献   
5.
6.
A Sidhu  S Kassis  J Kebabian  P H Fishman 《Biochemistry》1986,25(21):6695-6701
An iodinated compound, [125I]-8-iodo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin -7-ol, has been recently reported [Sidhu, A., & Kebabian, J.W. (1985) Eur. J. Pharmacol. 113, 437-440] to be a specific ligand for the D-1 dopamine receptor. Due to its high affinity and specific activity, this ligand was chosen for the biochemical characterization of the D-1 receptor. Alkylation of particulate fractions of rat caudate nucleus by N-ethylmaleimide (NEM) caused an inactivation of the D-1 receptor, as measured by diminished binding of the radioligand to the receptor. The inactivation of the receptor sites by NEM was rapid and irreversible, resulting in a 70% net loss of binding sites. On the basis of Scatchard analysis of binding to NEM-treated tissue, the loss in binding sites was due to a net decrease in the receptor number with a 2-fold decrease in the affinity of the receptor for the radioligand. Receptor occupancy by either a D-1 specific agonist or antagonist protected the ligand binding sites from NEM-mediated inactivation. NEM treatment of the receptor in the absence or presence of protective compound abolished the agonist high-affinity state of the receptor as well as membrane adenylate cyclase activity. The above-treated striatal membranes were fused with HeLa membranes and assayed for dopamine-stimulated adenylate cyclase activity. When the sources of D-1 receptors were from agonist-protected membranes, the receptors retained their ability to functionally couple to the HeLa adenylate cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
7.
S Kassis 《Biochemistry》1985,24(20):5666-5672
Exposure of HeLa cells to 5 mM sodium butyrate, but not 0.6 mM, resulted in a more efficient coupling between their beta-adrenergic receptors and the guanine nucleotide binding stimulatory (Ns) component of adenylate cyclase. Both concentrations of the fatty acid, however, caused an increase in receptor number. beta receptors from control and butyrate-treated cells had the same affinity for isoproterenol. Modulation of this affinity by GTP was greatly enhanced, however, in cells treated with 5 mM butyrate compared to untreated and 0.6 mM butyrate treated cells. The concentration of isoproterenol required to half-maximally stimulate adenylate cyclase (Kact) was reduced in cells treated with 5 mM butyrate. In addition, the Kact for GTP in the presence, but not the absence, of isoproterenol was reduced. The effect of butyrate on the coupling between beta receptors and Ns was analyzed in detail by monitoring the activation of Ns by guanine 5'-O-(3-thiotriphosphate) (GTP gamma S) in a two-step assay. In the absence of isoproterenol, Ns from control and 5 mM butyrate treated cells was activated to the same extent with the same time course and Kact for GTP gamma S. In the presence of isoproterenol, Ns from 5 mM butyrate treated cells was activated more rapidly and extensively than Ns from control cells. The Kact for both GTP gamma S and isoproterenol also was reduced. The rate of agonist-mediated activation of Ns was strongly dependent on temperature, which accentuated the differences between 5 mM butyrate treated and control cells. At 4 degrees C, the difference in rate was 8.8-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
8.
Summary To characterize the molecular properties conveyed by the isoforms of the subunit of Na,K-ATPase, the two major transepithelial transporting organs in the brine shrimp (Artemia salina), the salt glands and intestines, were isolated in pure form. The isoforms were quantified by ATP-sensitive fluorescein isothiocyanate (FITC) labeling. The salt gland enzyme exhibits only the 1 isoform, whereas the intestinal enzyme exhibits both the 1 and the 2 isoforms. After 32 hours of development, Na,K-ATPase activity [in mol Pi/mg protein/hr (1u)] in whole homogenates was 32±6 in the salt glands and 12±3 in the intestinal preparations (mean±sem). The apparent half-maximal activation constants (K 1/2) of the salt gland enzyme as compared to the intestinal enzyme were 3.7±0.6mm vs. 23.5±4mm (P<0.01) for Na+, 16.6±2.2mm vs. 8.29±1.5mm for K+ (P<0.01), and 0.87±0.8mm vs. 0.79±1.1mm for ATP (NS). The apparentK i's for ouabain inhibition were 1.1×10–4 m vs. 2×10–5 m, respectively. Treatment of whole homogenates with deoxycholic acid (DOC) produced a maximal Na,K-ATPase activation of 46% in the salt gland as compared to 23% in the intestinal enzyme. Similar differences were found with sodium dodecyl sulfate (SDS). The two distinct forms of Na,K-ATPase isolated from the brine shrimp differed markedly in three kinetic parameters as well as in detergent sensitivity. The differences inK 1/2 for Na+ and K+ are more marked than those reported for the mammalian Na,K-ATPase isoforms. These differences may be attributed to the relative abundances of the subunit isoforms; other potential determinants (e.g. differences in membrane lipids), however, have not been investigated.During the tenure of an Educational Commission For Foreign Medical Graduates Visiting Associate Professorship.  相似文献   
9.
We have analyzed in detail the neuronal network that generates heartbeat in the leech. Reciprocally inhibitory pairs of heart interneurons form oscillators that pace the heartbeat rhythm. Other heart interneurons coordinate these oscillators. These coordinating interneurons, along with the oscillator interneurons, form an eight-cell timing oscillator network for heartbeat. Still other interneurons, along with the oscillator interneurons, inhibit heart motor neurons, sculpting their activity into rhythmic bursts. Critical switch interneurons interface between the oscillator interneurons and the other premotor interneurons to produce two alternating coordination states of the motor neurons. The periods of the oscillator interneurons are modulated by endogenous RFamide neuropeptides. We have explored the ionic currents and graded and spike-mediated synaptic transmission that promote oscillation in the oscillator interneurons and have incorporated these data into a conductance-based computer model. This model has been of considerable predictive value and has led to new insights into how reciprocally inhibitory neurons produce oscillation. We are now in a strong position to expand this model upward, to encompass the entire heartbeat network, horizontally, to elucidate the mechanisms of FMRFamide modulation, and downward, to incorporate cellular morphology. By studying the mechanisms of motor pattern formation in the leech, using modeling studies in conjunction with parallel physiological experiments, we can contribute to a deeper understanding of how rhythmic motor acts are generated, coordinated, modulated, and reconfigured at the level of networks, cells, ionic currents, and synapses. © 1995 John Wiley & Sons, Inc.  相似文献   
10.
We have developed a biophysical model of a pair of reciprocally inhibitory interneurons comprising an elemental heartbeat oscillator of the leech. We incorporate various intrinsic and synaptic ionic currents based on voltage-clamp data. Synaptic transmission between the interneurons consists of both a graded and a spike-mediated component. By using maximal conductances as parameters, we have constructed a canonical model whose activity appears close to the real neurons. Oscillations in the model arise from interactions between synaptic and intrinsic currents. The inhibitory synaptic currents hyperpolarize the cell, resulting in activation of a hyperpolarization-activated inward currentI h and the removal of inactivation from regenerative inward currents. These inward currents depolarize the cell to produce spiking and inhibit the opposite cell. Spike-mediated IPSPs in the inhibited neuron cause inactivation of low-threshold Ca++ currents that are responsible for generating the graded synaptic inhibition in the opposite cell. Thus, although the model cells can potentially generate large graded IPSPs, synaptic inhibition during canonical oscillations is dominated by the spike-mediated component.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号