首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2012年   1篇
  2010年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
2.
Sculpture of dermal bones and their vascularization in basal tetrapods are closely connected. Ontogenetic data suggest that the large vessels that coursed to the superficial bone surface induced the formation of sculptural ridges and tubercles around their openings. Imprints show that the vessels continued on the bone surface and coursed within furrows or pits, where they were protected by the sculpture from mechanical damage. Dermal bone histology indicates a consolidation of the integument in basal tetrapods by strong, mineralized Sharpey's fibres in the sculptural ridges and tubercles, and by the presence of metaplastic tissue in several taxa. Because of the tight integration of bone and dermis, the large vessels were not able to spread over the sculptural elements, but instead had to pass interosseously. The diverse sculptural morphologies depend on the variation in height and width of the ‘nodal points’ and their connecting ridges, and in the size and shape of the enclosed cells and furrows. A principal component analysis (PCA) and discriminant function analysis (DFA) of 47 basal tetrapod taxa with 12 discrete characters shows that dermal sculpture is suited for distinguishing some main basal tetrapod lineages. Taxa that are interpreted as being largely aquatic have generally a more regular sculpture than presumably terrestrial ones. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 302–340.  相似文献   
3.
Abstract: The complete neurocranium plus palatoquadrate of the plagiosaurid temnospondyl Gerrothorax pulcherrimus from the Middle Triassic of Germany is described for the first time, based on outer morphological observations and micro‐CT scanning. The exoccipitals are strong elements with paroccipital processes and well‐separated occipital condyles. Anterolaterally, the exoccipitals contact the otics, which are mediolaterally elongated and have massive lateral walls. The otics contact the basisphenoid, which shows well‐developed sellar processes. Anteriorly, the basisphenoid is continuous with the sphenethmoid region. In its posterior portion, the sphenethmoid gives rise to robust, laterally directed laterosphenoid walls, a unique morphology among basal tetrapods. The palatoquadrate is extensively ossified. The quadrate portion overlaps the descending lamina of squamosal and ascending lamina of pterygoid anteriorly, almost contacting the epipterygoid laterally. The epipterygoid is a complex element and may be co‐ossified with otics and laterosphenoid walls. It has a broad, sheet‐like footplate and a horizontally aligned ascending process that contacts the laterosphenoid walls. The degree of ossification of the epipterygoid, however, is subject to individual variation obviously independent from ontogenetic changes. The stapes of Gerrothorax is a large, blade‐like element that differs conspicuously from the plesiomorphic temnospondyl condition. It has a prominent anterolateral projection which has not been observed in other basal tetrapods. Morphology of neurocranium and palatoquadratum of Gerrothorax most closely resembles that of the Russian plagiosaurid Plagiosternum danilovi, although the elements are less ossified in the latter. The extensive endocranial ossification of Gerrothorax is consistent with the general high degree of ossification in the exo‐ and endoskeleton of this temnospondyl and supports the view that a strong endocranial ossification cannot be evaluated as a plesiomorphic character in basal tetrapods.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号