首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2003年   3篇
  1982年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
We have previously shown that a stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of lymph node metastasis, but not in that of distant metastasis, in oral squamous cell carcinoma (SCC). In this study, we investigated the role of the autocrine SDF-1/CXCR4 system, with a focus on distant metastasis in oral SCC cells. The immunohistochemical staining of SDF-1 and CXCR4 using primary oral SCCs and metastatic lymph nodes showed a significantly higher number of SDF-1-positive cases among the metastatic lymph nodes than among the primary oral SCCs, which was associated with a poor survival rate among those of the former group. The forced expression of SDF-1 in B88 cells, which exhibit functional CXCR4 and lymph node metastatic potential (i.e., the autocrine SDF-1/CXCR4 system), conferred enhanced cell motility and anchorage-independent growth potential onto the cells. Orthotopic inoculation of the transfectant into nude mice was associated with an increase in the number of metastatic lymph nodes and more aggressive metastatic foci in the lymph nodes. Furthermore, the SDF-1 transfectant (i.e., the autocrine SDF-1/CXCR4 system) exhibited dramatic metastasis to the lung after i.v. inoculation, whereas the mock transfectant (i.e., the paracrine SDF-1/CXCR4 system) did not. Under the present conditions, AMD3100, a CXCR4 antagonist, significantly inhibited the lung metastasis of the SDF-1 transfectant, ameliorated body weight loss, and improved the survival rate of tumor-bearing nude mice. These results suggested that, in cases of oral SCC, the paracrine SDF-1/CXCR4 system potentiates lymph node metastasis, but distant metastasis might require the autocrine SDF-1/CXCR4 system.  相似文献   
2.
We describe the first complete mitochondrial genome sequence from a representative of the insect order Coleoptera, the flour beetle Tribolium castaneum. The 15,881 bp long Tribolium mitochondrial genome encodes 13 putative proteins, two ribosomal RNAs and 22 tRNAs canonical for animal mitochondrial genomes. Their arrangement is identical to that in Drosophila melanogaster, which is considered ancestral for insects and crustaceans (Boore et al., 1998; Hwang, et al., 2001a). Nucleotide composition, amino acid composition, and codon usage fall within the range of values observed in other insect mitochondrial genomes. Most notable features are the use of TCT as tRNA(Ser(AGN)) anticodon instead of GCT, which is used in most other arthropod species, and the relative scarcity of special sequence motifs in the 1431 bp long control region. Phylogenetic analysis confirmed resolving power in the conserved regions of the mitochondrial proteome regarding diversification events, which predate the emergence of pterygote insects, while little resolution was obtained at the level of basal perygote diversification. The partition of faster evolving amino acid sites harbored strong support for joining Lepidoptera with Diptera, which is consistent with a monophyletic Mecopterida.  相似文献   
3.
Salinity significantly increased trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS) uptake and decreased the K(+)/Na(+) ratio in salt-sensitive rice (Nipponbare) but did not markedly in salt-tolerant rice (Pokkali). Proline and glycinebetaine (betaine) suppressed the increase in PTS uptake and the decrease in the K(+)/Na(+) ratio in Nipponbare, but did not affect PTS uptake or the K(+)/Na(+) ratio in Pokkali.  相似文献   
4.
BackgroundBlack pericarp rice has recently become popular among rice consumers for its diverse health benefits specially anti-cancer effect. Cyanidin-3-Glucosides (C3G), an prominant bioactive component of anthocyanins which is abundantly present in black pericarp rice.ObjectivesWe investigated, how effectively it can be used to fortify Cyanidin-3-Glucosides (C3G) content in red and white pericarp polished rice or rice based bakery products for more nutritional value.MethodIn the present study, we have characterized several black pericarp rice cultivars along with some red pericarp and white pericarp rice cultivars by physicochemical including mineral profiling, and quantified the C3G by UFLC and LCMS.ResultsC3G content was significantly reduced from raw rice to cooked rice condition. All the black pericarp rice cultivars synthesized C3G, while this content was not detected in red and white pericarp rice cultivars. However, when 25% of black pericarp rice were mixed with 75% red or white pericarp polished rice, C3G content was significantly retained in cooked rice conditions. Formulation of rice-based bakery food product using black pericarp rice powder was also remarkably retained the C3G content as compared to that of cooking. Black rice is harder in texture, difficult to digest and needs higher energy for cooking. Therefore, we tried to circumvent these challenges by fortifying 25% of black pericarp rice with white or red pericarp rice.ConclusionFortification of C3G enriched black rice (25%) with red or white pericarp rice (75%) might bring a better nutritional quality in both cooking and baking condition. This may lead a way to the effective management of the non-communicable disease such as cancer for common rice consuming population.  相似文献   
5.
Saccharomyces boulardii (Sb), a probiotic yeast, protects against intestinal injury and inflammation caused by a wide variety of enteric pathogens, including Clostridium difficile. Given the broad range of protective effects of Sb in multiple gastrointestinal disorders, we hypothesize that Sb modulates host signaling pathways involved in intestinal inflammatory responses. In this study, we found that Sb culture supernatant (SbS) inhibits interleukin-8 production induced by C. difficile toxin A or IL-1beta in human colonocyte NCM460 cells in a dose-dependent fashion. Furthermore, SbS inhibited IL-1beta and toxin A induced Erk1/2 and JNK/SAPK but not p38 activation in NCM460 cells. To test whether this inhibition also occurs in vivo, we used a previously established mouse ileal loop model. On its own, SbS had no significant effect on basal fluid secretion or intestinal histology. However, Erk1/2 activation was significantly inhibited by SbS in toxin A exposed mouse ileal mucosa. In control loops, toxin A increased fluid secretion (2.2-fold), histological score (3.3-fold), and levels of the chemokine KC (4.5-fold). SbS pretreatment completely normalized toxin A mediated fluid secretion (p < 0.01), and histopathologic changes (p < 0.01) and substantially inhibited toxin A-associated KC increases (p < 0.001). In summary, the probiotic yeast S. boulardii inhibits C. difficile toxin A-associated enteritis by blocking the activation of Erk1/2 MAP kinases. This study indicates a new mechanism whereby Sb protects against intestinal inflammation and supports the hypothesis that Sb modulates host inflammatory signaling pathways to exert its beneficial effects.  相似文献   
6.
7.
Focused complement activation on foreign targets depends on regulatory proteins that decay the bimolecular C3 convertases. Although this process is central to complement control, how the convertases engage and disassemble is not established. The second and third complement control protein (CCP) modules of the cell surface regulator, decay-accelerating factor (DAF, CD55), comprise the simplest structure mediating this activity. Positioning the functional effects of 31 substitution mutants of DAF CCP2 to -4 on partial structures was previously reported. In light of the high resolution crystal structure of the DAF four-CCP functional region, we now reexamine the effects of these and 40 additional mutations. Moreover, we map six monoclonal antibody epitopes and overlap their effects with those of the amino acid substitutions. The data indicate that the interaction of DAF with the convertases is mediated predominantly by two patches approximately 13 A apart, one centered around Arg69 and Arg96 on CCP2 and the other around Phe148 and Leu171 on CCP3. These patches on the same face of the adjacent modules bracket an intermodular linker of critical length (16 A.) Although the key DAF residues in these patches are present or there are conservative substitutions in all other C3 convertase regulators that mediate decay acceleration and/or provide factor I-cofactor activity, the linker region is highly conserved only in the former. Intra-CCP regions also differ. Linker region comparisons suggest that the active CCPs of the decay accelerators are extended, whereas those of the cofactors are tilted. Intra-CCP comparisons suggest that the two classes of regulators bind different regions on their respective ligands.  相似文献   
8.
9.
We examined the involvement of intracellular glutathione (GSH) in methyl jasmonate (MeJA) signaling. The chlorina1-1 (ch1-1) mutation decreased GSH in guard cells and narrowed the stomatal aperture. GSH monoethyl ester increased intracellular GSH, diminishing this phenotype. GSH did not affect MeJA-induced reactive oxygen species production or cytosolic Ca(2+) oscillation, suggesting that GSH modulates MeJA signaling downstream of production and oscillation.  相似文献   
10.
Lignins isolated from cotton stalks, jute stick and dhaincha by acidolytic dioxane were characterized using alkaline nitrobenzene oxidation, elemental analysis, methoxyl analysis and molecular weight analysis and UV, IR (1)H NMR spectroscopy. The C(9) formulas for cotton stalks, jute stick and dhaincha (Sesbania aculeata) lignin were C(9)H(9.36)O(4.50)(OCH(3))(1.23), C(9)H(9.02)O(4.57)(OCH(3))(1.35) and C(9)H(8.88)O(4.65)(OCH(3))(1.50), respectively. All three lignins were of the guaiacyl-syringyl type. Cotton stalks lignin contained more p-hydroxy phenyl unit than dhaincha and jute stick lignins as observed by alkaline nitrobenzene oxidation products. The beta-O-4 units in these nonwood lignins had predominately erythro stereochemistry type.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号