首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2020年   1篇
  2017年   1篇
  2008年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
A new naphthylisoquinoline alkaloid, ancistrolikokine D, and the likewise 5,8'-coupled alkaloid ancistroealaine A, as well as two further, biosynthetically related, but nitrogen-free natural products, ancistronaphthoic acid B and cis-isoshinanolone, have been isolated from Ancistrocladus likoko J. LEACUTE;ONARD (Ancistrocladaceae). The 5,8'-coupling of the new alkaloids and of the alkaloids isolated earlier hints at a close phylogenetic relationship of A. likoko to other Central African Ancistrocladus species. The compounds show moderate activities against Leishmania donovani, Trypanosoma cruzi, and Trypanosoma brucei rhodesiense.  相似文献   
2.
African trypanosomes induce sleeping sickness. The parasites are transmitted during the blood meal of a tsetse fly and appear primarily in blood and lymph vessels, before they enter the central nervous system. During the latter stage, trypanosomes induce a deregulation of sleep–wake cycles and some additional neurological disorders. Historically, it was assumed that trypanosomes cross the blood–brain barrier and settle somewhere between the brain cells. The brain, however, is a strictly controlled and immune‐privileged area that is completely surrounded by a dense barrier that covers the blood vessels: this is the blood–brain barrier. It is known that some immune cells are able to cross this barrier, but this requires a sophisticated mechanism and highly specific cell–cell interactions that have not been observed for trypanosomes within the mammalian host. Interestingly, trypanosomes injected directly into the brain parenchyma did not induce an infection. Likewise, after an intraperitoneal infection of rats, Trypanosoma brucei brucei was not observed within the brain, but appeared readily within the cerebrospinal fluid (CSF) and the meninges. Therefore, the parasite did not cross the blood–brain barrier, but the blood–CSF barrier, which is formed by the choroid plexus, i.e. the part of the ventricles where CSF is produced from blood. While there is no question that trypanosomes are able to invade the brain to induce a deadly encephalopathy, controversy exists about the pathway involved. This review lists experimental results that support crossing of the blood–brain barrier and of the blood–CSF barrier and discuss the implications that either pathway would have on infection progress and on the survival strategy of the parasite. For reasons discussed below, we prefer the latter pathway and suggest the existence of an additional distinct meningeal stage, from which trypanosomes could invade the brain via the Virchow–Robin space thereby bypassing the blood–brain barrier. We also consider healthy carriers, i.e. people living symptomless with the disease for up to several decades, and discuss implications the proposed meningeal stage would have for new anti‐trypanosomal drug development. Considering the re‐infection of blood, a process called relapse, we discuss the likely involvement of the newly described glymphatic connection between the meningeal space and the lymphatic system, that seems also be important for other infectious diseases.  相似文献   
3.
From the roots of a recently discovered Ancistrocladus taxon, with close affinities to Ancistrocladus congolensis regarding molecular ITS sequence data, six naphthylisoquinoline alkaloids, 5'-O-demethylhamatine (2), 5'-O-demethylhamatinine (3), 6-O-demethylancistroealaine A (4), 6,5'-O,O-didemethylancistroealaine A (5), 5-epi-6-O-methylancistrobertsonine A (6), and 5-epi-4'-O-demethylancistrobertsonine C (7), have been isolated, along with a likewise benzopyranone carboxylic acid, 8. The structural elucidation succeeded by chemical, spectroscopic, and chiroptical methods. Their bioactivities were tested against protozoan parasites causing severe tropical diseases. Furthermore, eight known related alkaloids were identified.  相似文献   
4.
Liquid‐liquid phase separation (LLPS) in cells is known as a complex physicochemical process causing the formation of membrane‐less organelles (MLOs). Cells have well‐defined different membrane‐surrounded organelles like mitochondria, endoplasmic reticulum, lysosomes, peroxisomes, etc., however, on demand they can create MLOs as stress granules, nucleoli and P bodies to cover vital functions and regulatory activities. However, the mechanism of intracellular molecule assembly into functional compartments within a living cell remains till now not fully understood. in vitro and in vivo investigations unveiled that MLOs emerge after preceding liquid‐liquid, liquid‐gel, liquid‐semi‐crystalline, or liquid‐crystalline phase separations. Liquid‐liquid and liquid‐gel MLOs form the majority of cellular phase separation events, while the occurrence of micro‐sized crystals in cells was only rarely observed, however can be considered as a result of a preceding protein phase separation event. In vivo, also known and termed as in cellulo crystals, are reported since 1853. In some cases, they have been linked to vital cellular functions, such as storage and detoxification. However, the occurrence of in cellulo crystals is also associated to diseases like cataract, hemoglobin C diseases, etc. Therefore, better knowledge about the involved molecular processes will support drug discovery investigations to cure diseases related to in cellulo crystallization. We summarize physical and chemical determinants known today required for phase separation initiation and formation and in cellulo crystal growth. In recent years it has been demonstrated that LLPS plays a crucial role in cell compartmentalization and formation of MLOs. Here we discuss potential mechanisms and potential crowding agents involved in protein phase separation and in cellulo crystallization.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号