首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   2篇
  2022年   1篇
  2013年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
2.
Dynamics of breathing in the hypoxic awake lamb   总被引:1,自引:0,他引:1  
Newborn mammals respond to hypoxia with an immediate hyperventilation that is rapidly dampened. Changes in mechanical properties of the respiratory system during hypoxia have been considered an important reason for this fall in minute ventilation (VE). We have studied the dynamic mechanical behavior of the respiratory system in eight unanesthetized intact newborn lambs (mean age 2 days) during normoxia and hypoxia (FIO2 = 0.08). Mouth pressure (P), airflow (V), and volume (V) were recorded while lambs were breathing through a leak-proof face mask and a pneumotachograph. Active compliance (C') and resistance (R') of the respiratory system were computed from P developed during an inspiratory effort against airway closure at end expiration and V and V of the preceding breaths. Tidal expiratory V-V curves were analyzed to estimate the elevation in functional residual capacity (FRC) over resting volume (Vr). After hypoxia, there was an immediate increase in VE in the first 2 min, from 0.49 to 1.13 l.kg-1.min-1, followed by a rapid decrease to 0.80. After 8 min of hypoxia, C' was unchanged. The inspiratory R' decreased during hypoxia, probably reflecting a drop in inspiratory laryngeal resistance. The expiratory V-V curves during hypoxia showed considerable braking, often with a double peak in expiratory V. This pattern was only occasionally seen during normoxia. In animals with a linear segment of the expiratory V-V curves the FRC-Vr difference could be calculated and averaged 1.93 ml/kg during normoxia and 3.47 during hypoxia. The recoil P of the respiratory system at end expiration was 0.75 cmH2O during normoxia vs. 1.63 cmH2O during hypoxia (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
We have studied the breathing pattern (minute ventilation VE, tidal volume VT, and respiratory rate f) in newborn rats before and during barbiturate (20-30 mg/kg ip) or ketamine anesthesia (40-80 mg/kg ip). Animals were intact and prone in a flow plethysmograph in thermoneutral conditions. Before anesthesia, CO2 breathing (5 min in 5% and 5 min in 10% CO2 in O2) resulted in a substantial increase in VE (169 and 208%, respectively), which was maintained throughout the entire CO2 breathing period. This indicates that, despite the extremely large VE per kilogram at rest, in these small animals there is still a large reserve for a sustained increase in VE. During barbiturate, the resting VE dropped to 45% of control, due to a reduction in VT (83%) and f (59%). This latter result was due to a prolongation of the expiratory time (214%) with no significant changes in inspiratory time. CO2 response was also much depressed, to approximately 63% of the control. The late portion of the expiratory flow-volume curves, the slope of which represents the expiratory time constant of the system, was similar before and during anesthesia in approximately 50% of the animals, whereas it increased during anesthesia in the remaining animals. Although compliance of the respiratory system was generally unaltered, the increased impedance during anesthesia probably reflected an increased resistance. Qualitatively similar results were obtained during ketamine anesthesia. Therefore, as observed in adult mammals, anesthesia in newborn rats has a marked depressant effect on resting breathing pattern and CO2 response, occasionally accompanied by an increase in the expiratory impedance of the respiratory system.  相似文献   
4.
We questioned whether the amplitudes of the circadian pattern of body temperature (T(b)), oxygen consumption (V (O(2))) and heart rate (HR) changed systematically among species of different body weight (W). Because bodies of large mass have a greater heat capacitance than those of smaller mass, if the relative amplitude (i.e., amplitude/mean value) of metabolic rate was constant, one would expect the T(b) oscillation to decrease with the increase in the species W. We compiled data of T(b), V (O(2)) and HR from a literature survey of over 200 studies that investigated the circadian pattern of these parameters. Monotremata, Marsupials and Chiroptera, were excluded because of their characteristically low metabolic rate and T(b). The peak-trough ratios of V (O(2)) (42 species) and HR (35 species) averaged, respectively, 1.57+/-0.08, and 1.35+/-0.07, and were independent of W. The daily high values of T(b) did not change, while the daily low T(b) values slightly increased, with the species W; hence, the high-low T(b) difference (57 species) decreased with W (3.3 degrees C.W(-0.13)). However, the decrease in T(b) amplitude with W was much less than expected from physical principles, and the high-low T(b) ratio remained significantly above unity even in the largest mammals. Thus, it appears that in mammals, despite the huge differences in physical characteristics, the amplitude of the circadian pattern is a fixed (for V (O(2)) and HR), or almost fixed (for T(b)), fraction of the 24-h mean value. Presumably, the amplitudes of the oscillations are controlled parameters of physiological significance.  相似文献   
5.
In the chicken embryo, pulmonary ventilation and pulmonary gas exchange begin approximately one day before the completion of hatching. We asked to what extent the posture inside the egg, and the presence of the eggshell and membranes, may alter the mechanical behaviour of the respiratory system. The passive mechanical properties of the respiratory system were studied in chicken embryos during the internal pipping phase (rupture of the air cell) or the external pipping phase (hole in the eggshell). Tracheal pressure and changes in lung volume were recorded during mechanical ventilation, first, with the embryo curled up inside the egg, then again after exteriorization from the eggshell. In the internal pippers, respiratory system compliance increased and expiratory resistance decreased after exteriorization, whereas the mean inspiratory impedance did not change. In the external pippers, exteriorization had no significant effects on respiratory compliance, resistance, or impedance, and the values were similar to those of newly hatched chicks. We conclude that, in the chicken embryo, at a time when pulmonary ventilation becomes an important mechanism for gas exchange, the curled up posture inside the egg does not provide any significant mechanical constraint to breathing.  相似文献   
6.
We asked to what extent sustained hypoxia during embryonic growth might interfere with the normal development of thermogenesis. White Leghorn chicken eggs were incubated at 38 degrees C either in normoxia (Nx, 21% O2) or in hypoxia [Hx, 15% O2, from embryonic day 5 (E5) until hatching]. The Hx embryos had lower body weight (W) throughout incubation, and hatching was delayed by about 10 h. For both groups, all measurements were conducted in normoxia. At embryonic day E11, the static temperature-oxygen consumption (ambient T-Vo2) curve was typically ectothermic (Q10 = 1.92-1.94) and similar between Nx and Hx. Toward the end of incubation (E20), the Q10 averaged 1.41 +/- 0.06 in Nx and 1.79 +/- 0.08 in Hx (P < 0.005), indicating that the onset of the thermogenic response in Hx lagged behind Nx. In the 1-day-old hatchlings (H1), body weight did not significantly differ between Nx and Hx. At H1, the T-Vo2 curves were endothermic-type, and more so in the older (>8 h old) than in the newly hatched (<8 h old) chicks, whether examined statically or dynamically as a function of time. In either case, the thermogenic responses of Hx were lower than those of Nx. In a 43-31 degrees C thermocline, the preferred T of the Hx hatchlings was around 37.3 degrees C, and similar to Nx, suggesting a similar setpoint for thermoregulation. We conclude that hypoxic incubation blunted the development of thermogenesis. This could be interpreted as an example of epigenetic regulation, in which an environmental perturbation during early development alters the phenotypic expression of a regulatory system.  相似文献   
7.
8.
9.
We investigated the effects of sustained embryonic hypoxia on the neonatal ventilatory chemosensitivity. White Leghorn chicken eggs were incubated at 38 degrees C either in 21% O(2) throughout incubation (normoxia, Nx) or in 15% O(2) from embryonic day 5 (hypoxia, Hx), hatching time included. Hx embryos hatched approximately 11 h later than Nx, with similar body weights. Measurements of gaseous metabolism (oxygen consumption, Vo(2)) and pulmonary ventilation (Ve) were conducted either within the first 8 h (early) or later hours (late) of the first posthatching day. In resting conditions, Hx had similar Vo(2) and body temperature (Tb) and slightly higher Ve and ventilatory equivalent (Ve/Vo(2)) than Nx. Ventilatory chemosensitivity was evaluated from the degree of hyperpnea (increase in Ve) and of hyperventilation (increase in Ve/Vo(2)) during acute hypoxia (15 and 10% O(2), 20 min each) and acute hypercapnia (2 and 4% CO(2), 20 min each). The chemosensitivity differed between the early and late hours, and at either time the responses to hypoxia and hypercapnia were less in Hx than in Nx because of a lower increase in Ve and a lower hypoxic hypometabolism. In a second group of Nx and Hx hatchlings, the Ve response to 10% O(2) was tested in the same hatchlings at the early and late hours. The results confirmed the lower hypoxic chemosensitivity of Hx. We conclude that hypoxic incubation affected the development of respiratory control, resulting in a blunted ventilatory chemosensitivity.  相似文献   
10.
During passive inflation of the respiratory system, the rib cage (RC) expands because the pressure applied to it [approximately equal to abdominal pressure (Pab)] increases. Similar Pab-tidal volume (VT) relationships between passive and spontaneous inspirations would occur only if 1) Pab acts on RC equally in the two situations (no distortion) or 2) the extradiaphragmatic inspiratory muscles expand RC, compensating for distortion. In anesthetized adult rats and in sleeping human infants the passive relationships between VT and Pab or abdomen motion (AB) were constructed by occluding the airways during expiration. For a given Pab (or AB) in active breathing VT averaged 55% (rats) and 49% (infants) of the passive volume change. With phrenic stimulation in rats VT was only slightly less than during spontaneous breathing, indicating that, in the latter case, the respiratory system was essentially driven only by the diaphragm. In both species occasional breaths with large RC expansion occurred, and VT was then equal to or larger than the passive volume at iso-Pab. We conclude that 1) RC distortion decreases VT to approximately half of the passive value and 2) being on the relaxation curve reflects "compensated" distortion and not absence of it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号