首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   8篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   7篇
  2011年   4篇
  2010年   6篇
  2009年   3篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   6篇
  2001年   1篇
  2000年   4篇
  1998年   2篇
  1996年   1篇
  1992年   3篇
  1991年   3篇
  1989年   4篇
  1988年   1篇
  1986年   6篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1977年   1篇
  1976年   4篇
  1974年   1篇
  1973年   3篇
  1969年   1篇
  1967年   1篇
  1918年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
1.
2.
3.
Glutamine:fructose-6-phosphate amidotransferase (glucosamine-6-phosphate synthase) catalyzes the first step of the hexosamine pathway required for the biosynthesis of cell wall precursors. The Candida albicans GFA1 gene was cloned by complementing a gfa1 mutation of Saccharomyces cerevisiae (previously known as gcn1-1; W. L. Whelan and C. E. Ballou, J. Bacteriol. 124:1545-1557, 1975). GFA1 encodes a predicted protein of 713 amino acids and is homologous to the corresponding gene from S. cerevisiae (72% identity at the nucleotide sequence level) as well as to the genes encoding glucosamine-6-phosphate synthases in bacteria and vertebrates. In cell extracts, the C. albicans enzyme was 4-fold more sensitive than the S. cerevisiae enzyme to UDP-N-acetylglucosamine (an inhibitor of the mammalian enzyme) and 2.5-fold more sensitive to N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (a glutamine analog and specific inhibitor of glucosamine-6-phosphate synthase). Cell extracts from the S. cerevisiae gfa1 strain transformed with the C. albicans GFA1 gene exhibited sensitivities to glucosamine-6-phosphate synthase inhibitors that were similar to those shown by the C. albicans enzyme. Southern hybridization indicated that a single GFA1 locus exists in the C. albicans genome. Quantitative Northern (RNA) analysis showed that the expression of GFA1 in C. albicans is regulated during growth: maximum mRNA levels were detected during early log phase. GFA1 mRNA levels increased following induction of the yeast-to-hyphal-form transition, but this was a response to fresh medium rather than to the morphological change.  相似文献   
4.
5.
6.
Flavonoids are widely distributed in plants and constitute the most common polyphenolic phytoconstituents in the human diet. In this study, the in vitro inhibitory activity of 44 different flavonoids (1–44) against mushroom tyrosinase was studied, and an in silico study and type of inhibition for the most active compounds were evaluated too. Tyrosinase inhibitors block melanogenesis and take part in melanin production or distribution leading to pigmentation diseases. The in vitro study showed that quercetin was a competitive inhibitor (IC50=44.38 ± 0.13 µM) and achieved higher antityrosinase activity than the control inhibitor kojic acid. The in silico results highlight the importance of the flavonoid core with a hydroxyl at C7 as a strong contributor of interference with tyrosinase activity. According to the developed statistical model, the activity of molecules depends on hydroxylation at C3 and methylation at C8, C7, and C3 in the benzo-γ-pyrane ring of the flavonoids.  相似文献   
7.
The C terminus of CFTR contains a PDZ interacting domain that is required for the polarized expression of cystic fibrosis transmembrane conductance regulator (CFTR) in the apical plasma membrane of polarized epithelial cells. To elucidate the mechanism whereby the PDZ interacting domain mediates the polarized expression of CFTR, Madin-Darby canine kidney cells were stably transfected with wild type (wt-CFTR) or C-terminally truncated human CFTR (CFTR-DeltaTRL). We tested the hypothesis that the PDZ interacting domain regulates sorting of CFTR from the Golgi to the apical plasma membrane. Pulse-chase studies in combination with domain-selective cell surface biotinylation revealed that newly synthesized wt-CFTR and CFTR-DeltaTRL were targeted equally to the apical and basolateral membranes in a nonpolarized fashion. Thus, the PDZ interacting domain is not an apical sorting motif. Deletion of the PDZ interacting domain reduced the half-life of CFTR in the apical membrane from approximately 24 to approximately 13 h but had no effect on the half-life of CFTR in the basolateral membrane. Thus, the PDZ interacting domain is an apical membrane retention motif. Next, we examined the hypothesis that the PDZ interacting domain affects the apical membrane half-life of CFTR by altering its endocytosis and/or endocytic recycling. Endocytosis of wt-CFTR and CFTR-DeltaTRL did not differ. However, endocytic recycling of CFTR-DeltaTRL was decreased when compared with wt-CFTR. Thus, deletion of the PDZ interacting domain reduced the half-life of CFTR in the apical membrane by decreasing CFTR endocytic recycling. Our results identify a new role for PDZ proteins in regulating the endocytic recycling of CFTR in polarized epithelial cells.  相似文献   
8.
Intracellular aggregation of misfolded proteins is observed in a number of human diseases, in particular, neurologic disorders in which expanded tracts of polyglutamine residues play a central role. A variety of other proteins are prone to aggregation when mutated, indicating that this process is a common pathologic mechanism for inherited disorders. However, little is known about the relationship between the sequence of aggregating peptides and the specificity of intracellular accumulation. Here we demonstrate that substitution of two residues eliminates aggregation of a 111-amino acid peptide derived from the C-terminal portion of the cystic fibrosis transmembrane conductance regulator (CFTR). We also show that fusion to a reporter protein considerably alters the subcellular distribution of aggregating peptide. When fused to green fluorescent protein, the peptide containing amino acids 1370-1480 of CFTR accumulates in large perinuclear or nuclear aggregates. The same CFTR fragment devoid of green fluorescent protein localizes predominantly to discrete accumulations associated with mitochondria. Importantly, both types of accumulation are dependent on the presence of the same two amino acids within the CFTR sequence. Co-expression studies show that both CFTR-derived proteins can co-localize in large cytoplasmic/nuclear aggregates. However, neither CFTR construct accumulates in intracellular inclusions formed by N-terminal fragment of huntingtin. In addition to unique accumulation patterns, each aggregating peptide shows differences in association with chaperone proteins. Thus, our results indicate that the process of intracellular aggregation can be a selective process determined by the composition of the aggregating peptides.  相似文献   
9.
Polarization of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel to the apical plasma membrane in epithelial cells is critical for vectorial chloride transport. Previously, we reported that the C terminus of CFTR constitutes a PDZ-interacting domain that is required for CFTR polarization to the apical plasma membrane and interaction with the PDZ domain-containing protein EBP50 (NHERF). PDZ-interacting domains are typically composed of the C-terminal three to five amino acids, which in CFTR are QDTRL. Our goal was to identify the key amino acid(s) in the PDZ-interacting domain of CFTR with regard to its apical polarization, interaction with EBP50, and ability to mediate transepithelial chloride secretion. Point substitution of the C-terminal leucine (Leu at position 0) with alanine abrogated apical polarization of CFTR, interaction between CFTR and EBP50, efficient expression of CFTR in the apical membrane, and chloride secretion. Point substitution of the threonine (Thr at position -2) with alanine or valine had no effect on the apical polarization of CFTR, but reduced interaction between CFTR and EBP50, efficient expression of CFTR in the apical membrane as well as chloride secretion. By contrast, individual point substitution of the other C-terminal amino acids (Gln at position -4, Asp at position -3 and Arg at position -1) with alanine had no effect on measured parameters. We conclude that the PDZ-interacting domain, in particular the leucine (position 0) and threonine (position -2) residues, are required for the efficient, polarized expression of CFTR in the apical plasma membrane, interaction of CFTR with EBP50, and for the ability of CFTR to mediate chloride secretion. Mutations that delete the C terminus of CFTR may cause cystic fibrosis because CFTR is not polarized, complexed with EBP50, or efficiently expressed in the apical membrane of epithelial cells.  相似文献   
10.
Extended spectrum β-lactamases production is one of the most common mechanism of resistance to extended spectrum β-lactam antibiotics is increasing worldwide. Twenty five strains of Klebsiella pneumoniae isolated from clinical specimens were tested. Based on the phenotypic confirmatory test all these strains were defined as ESBL producers named ESBL(+). The plasmid DNA from each strains was used to investigate the presence of blaSHV genes responsible for extended spectrum β-lactamases production. Moreover, susceptibility of these strains to antibiotic other than β-lactams in was tested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号