首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   6篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1991年   2篇
  1978年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
Prior to generating transgenic animals for bioreactors, it is important to evaluate the vector constructed to avoid poor protein expression. Mammary epithelial cells cultured in vitro have been proposed as a model to reproduce the biology of the mammary gland. In the present work, three lentiviral vectors were constructed for the human growth hormone (GH), interleukin 2 (IL2), and granulocyte colony-stimulating factor 3 (CSF3) genes driven by the bovine β-casein promoter. The lentiviruses were used to transduce mammary epithelial cells (MAC-T), and the transformed cells were cultured on polystyrene in culture medium with and without prolactin. The gene expression of transgenes was evaluated by PCR using cDNA, and recombinant protein expression was evaluated by Western-blotting using concentrated medium and cellular extracts. The gene expression, of the three introduced genes, was detected in both induced and non induced MAC-T cells. The human GH protein was detected in the concentrated medium, whereas CSF3 was detected in the cellular extract. Apparently, the cellular extract is more appropriate than the concentrated medium to detect recombinant protein, principally because concentrated medium has a high concentration of bovine serum albumin. The results suggest that MAC-T cells may be a good system to evaluate vector construction targeting recombinant protein expression in milk.  相似文献   
2.
Elucidating the structure and biosynthesis of neuromelanin (NM) would be an important step towards understanding its putative role in the pathogenesis of Parkinson’s disease. A useful complement to studies aimed at unraveling the origin and properties of this essentially insoluble natural substance is the preparation of synthetic derivatives that resemble NM. With this aim in mind, water-soluble conjugates between dopamine-derived melanin and bovine serum albumin (BSA) were synthesized. Melanin–BSA adducts were prepared with both eumelanic oligomers obtained through the oxidative polymerization of dopamine and pheomelanic oligomers obtained under the same conditions from dopamine and cysteine. Iron ions were added during the synthesis to understand the interaction between the pigment and this metal ion, as the NM in neurons in several human brain regions contains significant amounts of iron. The structures of the conjugates were analyzed by 1H NMR spectroscopy and controlled proteolysis/MS experiments. The binding of iron(III) ions was evaluated by ICP analysis and EPR spectroscopy. The EPR signal from bound iron(III) indicated high-spin octahedral sites and, as also seen for NM, the signal is coupled to a signal from a radical associated with the melanic components of the conjugates. However, the intensity of the EPR signal from iron suggested a reduced fraction of the total iron, indicating that most of the iron is strongly coupled in clusters within the matrix. The amount of paramagnetic, mononuclear iron(III) was greater in the pheomelanin–BSA conjugates, suggesting that iron clustering is reduced in the sulfur-containing pigment. Thus, the melanin–BSA conjugates appear to be good models for the natural pigment.  相似文献   
3.
The chloroperoxidase catalyzed oxidation of methyl phenyl sulfide to (R)-methyl phenyl sulfoxide was investigated, both in batch and membrane reactors, using as oxidant H2O2, or O2 in the presence of either dihydroxyfumaric acid or ascorbic acid. The effects of pH and nature and concentration of the oxidants on the selectivity, stability, and productivity of the enzyme were evaluated. The highest selectivity was displayed by ascorbic acid/O2, even though the activity of chloroperoxidase with this system was lower than that obtained with the others. When the reaction was carried out in a membrane reactor, it was possible to reuse the enzyme for several conversion cycles. The results obtained with ascorbic acid/O2 and dihydroxyfumaric acid/O2 as oxidants do not seem to be compatible with either a mechanism involving hydroxyl radicals as the active species or with the hypothesis that oxidation occurs through the initial formation of H2O2. Copyright 1999 John Wiley & Sons, Inc.  相似文献   
4.
The biomimetic catalytic oxidation of 3,5-di-tert-butylcatechol by the dicopper(II) complex of the ligand ,-bis{bis[1-(1-methyl-2-benzimidazolyl)methyl]amino}-m-xylene in the presence of dioxygen has been investigated as a function of temperature and pH in a mixed aqueous/organic solvent. The catalytic cycle occurs in two steps, the first step being faster than the second step. In the first step, one molecule of catechol is oxidized by the dicopper(II) complex, and the copper(II) centers are reduced. From the pH dependence, it is deduced that the active species of the process is the monohydroxo form of the dinuclear complex. In the second step, the second molecule of catechol is oxidized by the dicopper(I)-dioxygen complex formed upon oxygenation of the reduced complex. In both cases, catechol oxidation is an inner-sphere electron transfer process involving binding of the catechol to the active species. The binary catechol-dicopper(II) complex formed in the first step could be characterized at very low temperature (–90 °C), where substrate oxidation is blocked. On the contrary, the ternary complex of dicopper(I)-O2-catechol relevant to the second step does not accumulate in solution and could not be characterized, even at low temperature. The investigation of the biphasic kinetics of the catalytic reaction over a range of temperatures allowed the thermodynamic (H° and S°) and activation parameters (H and S) connected with the key steps of the catecholase process to be obtained.  相似文献   
5.
Covalently modified microperoxidases as heme-peptide models for peroxidases   总被引:1,自引:0,他引:1  
Microperoxidase-8 (MP8) and microperoxidase-9 (MP9) have been covalently modified by attachment of proline-containing residues to the amino terminal peptide chain in order to obtain new peroxidase model systems. The catalytic activities of these derivatives in the oxidation of p-cresol by hydrogen peroxide have been compared to that of MP8. The presence of steric hindrance above the heme reduces the formation rate of the catalytically active species, while the reactivity is increased when the amino group of a proline residue is close to the iron. The modification of the catalyst affects the rate of degradation processes undergone by the heme group during catalysis. A bulky aromatic group on the distal side decreases the stability of the complex because it reduces the mobility of a phenoxy radical species formed during catalysis, while the presence of proline residues increases the number of turnovers of the heme catalysts before degradation. The complex Pro2-MP8 obtained by addition of two proline residues to MP8 exhibits the best catalytic performance in terms of activity and chemical stability.  相似文献   
6.
ITF2357 (givinostat) is a histone deacetylase inhibitor with antiinflammatory properties at low nanomolar concentrations. We report here a phase I safety and pharmacokinetics trial in healthy males administered 50, 100, 200, 400 or 600 mg orally. After 50 mg, mean maximal plasma concentrations reached 104 nmol/L 2 h after dosing, with a half-life of 6.9 h. After 100 mg, maximal concentration reached 199 nmol/L at 2.1 h with a half-life of 6.0 h. Repeat doses for 7 consecutive days of 50, 100 or 200 mg resulted in nearly the same kinetics. There were no serious adverse effects (AEs) and no organ toxicities. However, there was a dose-dependent but transient fall in platelets. After 7 daily doses of 50 or 100 mg, the mean decrease in platelets of 17 and 25% was not statistically significant and returned to baseline within 14 d. Blood removed from the subjects after oral dosing was cultured ex vivo with endotoxin, and the release of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-1Ra, interferon (IFN)-γ and IL-10 was determined. Maximal reduction in IL-1β, TNFα, IL-6 and IFNγ was observed 4 h after dosing but returned to baseline at 12 h. There was no significant reduction in IL-1Ra or IL-10. With daily dosing, the fall in cytokine production in blood cultures observed on day 7 was nearly the same as that of the first day. We conclude that dosing of 50 or 100 mg ITF2357 is safe in healthy humans and transiently but repeatedly reduces the production of proinflammatory cytokines without affecting production of antiinflammatory cytokines.  相似文献   
7.
Epithelial cells from mammary gland tissue that are cultured in vitro are able to maintain specific functions of this gland, such as cellular differentiation and milk protein synthesis. These characteristics make these cells a useful model to study mammary gland physiology, development and differentiation; they can also be used for production of exogenous proteins of pharmaceutical interest. Bovine mammary epithelial cells were cultured in vitro after isolation from mammary gland tissue of animals at different stages of development. The cells were plated on Petri dishes and isolated from fibroblasts using saline/EDTA treatment, followed by trypsinization. Cells isolated on plastic were capable of differentiating into alveolus-like structures; however, only cells derived from non-pregnant and non-lactating animals expressed β-casein. Real-time qPCR and epifluorescence microscopy analyses revealed that alveolus-like structures were competent at expressing Emerald green fluorescent protein (EmGFP) driven by the β-casein promoter, independent of β-casein expression.  相似文献   
8.
The structural and functional consequences of engineering a positively charged Lys residue and replacing the natural heme with a heme-L-His derivative in the active site of sperm whale myoglobin (Mb) have been investigated. The main structural change caused by the distal T67K mutation appears to be mobilization of the propionate-7 group. Reconstitution of wild-type and T67K Mb with heme-L-His relaxes the protein fragment around the heme because it involves the loss of the interaction of one of the propionate groups which stabilize heme binding to the protein. This modification increases the accessibility of exogenous ligands or substrates to the active site. The catalytic activity of the reconstituted proteins in peroxidase-type reactions is thus significantly increased, particularly with T67K Mb. The T67K mutation slightly reduces the thermodynamic stability and the chemical stability of Mb during catalysis, but somewhat more marked effects are observed by cofactor reconstitution. Hydrogen peroxide, in fact, induces pseudo-peroxidase activity but also promotes oxidative damage of the protein. The mechanism of protein degradation involves two pathways, which depend on the evolution of radical species generated on protein residues by the Mb active species and on the reactivity of phenoxy radicals produced during turnover. Both protein oligomers and heme-protein cross-links have been detected upon inactivation.  相似文献   
9.
In the presence of H(2)O(2), heme proteins form active intermediates, which are able to oxidize exogenous molecules. Often these products are not stable compounds but reactive species on their own, such as organic radicals. They can both diffuse to the bulk of the solution or react with the protein that generated them. Here, we describe the self-modification underwent by heme proteins with globin-type fold, that is, myoglobin, hemoglobin, and neuroglobin when treated with NO(2) (-) or catechols in the presence of H(2)O(2). The reactive nitrogen species generated by NO(2) (-) give rise to nitration, oxidation, and/or crosslinking reactions between the proteins or their subunits. The quinones formed upon reaction with catechols easily modify Cys and His residues and eventually cause protein aggregation, which induces precipitation. The pattern of modifications undergone by the protein strongly depends on the nature of the protein and the reaction conditions.  相似文献   
10.
The present investigation addresses the problem of the binding mode of phenolic inhibitors and the substrate ascorbate to the active site of ascorbate oxidase. The results from both types of compounds indicate that the binding site is located in a pocket near the type 1 copper center. This information is of general interest for blue multicopper oxidases. Docking calculations performed on the ascorbate oxidase-ascorbate complex show that binding of the substrate occurs in a pocket near type 1 Cu, and is stabilized by at least five hydrogen bonding interactions with protein residues, one of which involves the His512 Cu ligand. Similar docking studies show that the isomeric fluorophenols, which act as competitive inhibitors toward ascorbate, bind to the enzyme in a manner similar to ascorbate. The docking calculations are supported by 19F NMR relaxation measurements performed on fluorophenols in the presence of the enzyme, which show that the bound inhibitors undergo enhanced relaxation by the paramagnetic effect of a nearby Cu center. Unambiguous support to the location of the inhibitor close to type 1 Cu was obtained by comparative relaxation measurements of the fluorophenols in the presence of the ascorbate oxidase derivative where a Zn atom selectively replaces the paramagnetic type 2 Cu. The latter experiments show that contribution to relaxation of the bound inhibitors by the type 2 Cu site is negligible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号