首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
  国内免费   1篇
  2024年   1篇
  2021年   1篇
  2019年   1篇
  2018年   5篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有34条查询结果,搜索用时 281 毫秒
1.
Aim This study investigates changes in bird communities between 1998 and 2008 in four savanna sites in Swaziland and the extent to which shrub encroachment is responsible for these changes. Location Swaziland, southern Africa. Methods Generalized estimated equations were used to estimate changes in bird species occurrence between 1998 and 2008. Remote sensing of aerial photographs/satellite images was used to assess vegetation changes during the same period. We assessed the role of shrub encroachment for bird communities by testing the relationship between change in species occurrence and species habitat using a general linear model. We also estimated species richness, colonization and extinction and used general linear models to test the effects of vegetation changes on these parameters. Results More than half of the bird species showed a significant change in occurrence between 1998 and 2008: 32 species increased and 29 decreased. Change in species occurrence was significantly explained by species habitat. Species significantly increasing were mainly associated with wooded savanna, whereas species significantly decreasing were mainly associated with open savanna. Species richness decreased significantly, and this decrease was significantly explained by shrub cover increase at the plot scale (from 24% to 44% on average). Extinction at the plot scale was significantly influenced by the loss of grass cover, while colonization at the plot scale was influenced by tree cover increase. Main conclusions This study represents the first evidence of temporal changes in bird communities owing to shrub encroachment in southern Africa. Despite its short time frame (10 years), this study shows dramatic changes in both vegetation structure and bird community composition. This confirms the general concern for southern African bird species associated with open savanna if current trends continue.  相似文献   
2.
The pipistrelloid bats (genera Hypsugo, Neoromicia, and Pipistrellus) of Africa have been poorly studied, partly as a result of problems associated with species identification. This paper examines the diversity of pipistrelloid bats from Mount Nimba, a biodiversity hotspot in the Upper Guinean rainforest zone. Traditional morphometrics, the structure of the baculum, and sequences of the cytochrome oxidase subunit I (COI) gene were used to identify taxa. Species richness was exceptionally high and included at least ten taxa identifiable on molecular grounds. Of these, existing names could be assigned to six taxa. A seventh taxon was described as a species new to science, Neoromicia roseveari sp. nov. , and was distinguished on molecular grounds, craniodental morphology, and baculum structure. The remaining taxa may refer to as‐yet undescribed species but we lacked sufficient material to formally describe them here. The high species richness of pipistrelloid bats on Mount Nimba may be associated with the transition zone from lowland rainforest to moist savannah. © 2013 The Linnean Society of London  相似文献   
3.
Given the diversity of prey consumed by insectivorous bats, it is difficult to discern the composition of their diet using morphological or conventional PCR-based analyses of their faeces. We demonstrate the use of a powerful alternate tool, the use of the Roche FLX sequencing platform to deep-sequence uniquely 5' tagged insect-generic barcode cytochrome c oxidase I (COI) fragments, that were PCR amplified from faecal pellets of two free-tailed bat species Chaerephon pumilus and Mops condylurus (family: Molossidae). Although the analyses were challenged by the paucity of southern African insect COI sequences in the GenBank and BOLD databases, similarity to existing collections allowed the preliminary identification of 25 prey families from six orders of insects within the diet of C. pumilus, and 24 families from seven orders within the diet of M. condylurus. Insects identified to families within the orders Lepidoptera and Diptera were widely present among the faecal samples analysed. The two families that were observed most frequently were Noctuidae and Nymphalidae (Lepidoptera). Species-level analysis of the data was accomplished using novel bioinformatics techniques for the identification of molecular operational taxonomic units (MOTU). Based on these analyses, our data provide little evidence of resource partitioning between sympatric M. condylurus and C. pumilus in the Simunye region of Swaziland at the time of year when the samples were collected, although as more complete databases against which to compare the sequences are generated this may have to be re-evaluated.  相似文献   
4.
The population dynamics of Mus minutoides and Steatomys pratensis are virtually unknown. These two species were live-trapped over a 12-month period in a subtropical grassland in Swaziland. Numbers of M. minutoides were relatively high in winter, declined in spring and the population disappeared in summer and autumn. By contrast, numbers of S. pratensis increased gradually from winter to summer and reached a peak in autumn. There were no differences between the mean weights of male and female M. minutoides and S. pratensis. There were, however, seasonal differences in the mean weight of male S. pratensis, with highest weights recorded in summer. Individuals of both species came into breeding condition in spring (October–November). Reproduction had ceased by the end of autumn (April–May). Monthly survival rates of M. minutoides were highest in winter, but did not vary seasonally in S. pratensis. Burning had a pronounced effect on the distribution of S. pratensis. Steatomys pratensis individuals selected recently burnt but revegetated areas over unburnt areas. The effect of burning on the M. minutoides population is difficult to assess, as this species disappeared shortly after the fire.  相似文献   
5.
Conservation planning assessments based on species atlas data are known to select planning units containing ecotones because these areas are relatively species‐rich. However, this richness is often dependent on the presence of adjoining core habitat, so populations within these ecotones might not be viable. This suggests that atlas data may also fail to distinguish between planning units that are highly transformed by agriculture or urbanization with those from neighbouring untransformed units. These highly transformed units could also be identified as priority sites, based solely on the presence of species that require adjoining habitat patches to persist. This potential problem was investigated using bird and mammal atlas data from Swaziland and a landcover map and found that: (i) there was no correlation between planning unit species richness and proportion of natural landcover for both taxa; (ii) the priority areas that were identified for both birds and mammals were no less transformed than if the units had been chosen at random and (iii) an approach that aimed to meet conservation targets and minimize transformation levels failed to identify more viable priority areas. This third result probably arose because 4.8% of the bird species and 22% of the mammal species were recorded in only one planning unit, reducing the opportunity to choose between units when aiming to represent each species. Therefore, it is suggested that using species lists to design protected area networks at a fine spatial scale may not conserve species effectively unless population viability data are explicitly included in the analysis.  相似文献   
6.
EcoHealth - We investigated the prevalence of coronaviruses in 44 bats from four families in northeastern Eswatini using high-throughput sequencing of fecal samples. We found evidence of...  相似文献   
7.
Although important advances have been made in recent years in the taxonomy of different families and subfamilies of Malagasy bats, those belonging to the Vespertilioninae remain partially unresolved. Herein using a mitochondrial marker (cytochrome b) as the point of departure for 76 specimens of Malagasy vespers and appropriate African taxa, we diagnose the six taxa of this subfamily on the island by overlaying different morphological and bioacoustic characters on the clade structure of sequenced animals. The species include: endemic Neoromicia matroka, which is sister to African N. capensis; endemics N. malagasyensis and N. robertsi, which form sister species; a member of the genus Hypsugo, which is sister to African H. anchietae and described herein as new to science; Pipistrellus hesperidus for which Madagascar animals are genetically close but distinct from African populations of the same species; and endemic P. raceyi, which shows segregation of eastern (mesic) and western (dry) populations and its sister species relationships are unresolved. While the external and craniodental measurements, as well as bioacoustic variables, allow only partial differentiation of these six species of Vespertilioninae, molecular characters provide definitive separation of the taxa, as do male bacular morphology. © 2015 The Linnean Society of London  相似文献   
8.
The genus Glauconycteris Dobson, 1875 currently contains 12 species of butterfly bats, all endemic to sub‐Saharan Africa. Most species are rarely recorded, with half of the species known from less than six geographic localities. The taxonomic status of several species remains problematic. Here, we studied the systematics of butterfly bats using both morphological and molecular approaches. We examined 45 adult specimens for external anatomy and skull morphology, and investigated the phylogeny of Glauconycteris using DNA sequences from three mitochondrial genes and 116 individuals, which in addition to outgroup taxa, included nine of the twelve butterfly bat species currently recognized. Four additional nuclear genes were sequenced on a reduced sample of 69 individuals, covering the outgroup and Glauconycteris species. Our molecular results show that the genus Glauconycteris is monophyletic, and that it is the sister‐group of the Asian genus Hesperoptenus. Molecular dating estimates based on either Cytb or RAG2 data sets suggest that the ancestor of Glauconycteris migrated into Africa from Asia during the Tortonian age of the Late Miocene (11.6–7.2 Mya), while the basal diversification of the crown group occurred in Africa at around 6 ± 2 Mya. The species G. superba is found to be the sister‐group of G. variegata, questioning its placement in the recently described genus Niumbaha. The small species living in tropical rainforests constitute a robust clade, which contains three divergent lineages: (i) the “poensis” group, which is composed of G. poensis, G. alboguttata, G. argentata, and G. egeria; (ii) the “beatrix” group, which contains G. beatrix and G. curryae; and (iii) the “humeralis” group, which includes G. humeralis and a new species described herein. In the “poensis” group, G. egeria is found to be monophyletic in the nuclear tree, but polyphyletic in the mitochondrial tree. The reasons for this mito‐nuclear discordance are discussed.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号