首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   7篇
  国内免费   1篇
  2024年   1篇
  2023年   6篇
  2022年   13篇
  2021年   15篇
  2020年   6篇
  2019年   13篇
  2018年   12篇
  2017年   11篇
  2016年   7篇
  2015年   7篇
  2014年   10篇
  2013年   11篇
  2012年   14篇
  2011年   9篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2007年   8篇
  2006年   6篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
1.
Fundamental genetic studies were initiated for the monoecious red alga Gelidium vagum. Color and sterility mutants were isolated and characterized to provide genetic tools, initially to identify hybrid plants when they occurred in crosses, and secondarily to eliminate self-fertilization altogether. When fertility phenotypes were scored, rapid onset of reproduction in culture was favored by long day-length, moderately high irradiance levels from fluorescent lights, warm temperature and the addition of Tris buffer to the medium. A recessive green mutant (designated grn 1) was characterized and used in subsequent crosses to allow a clear distinction between non-hybrid (green) and hybrid (red) offspring. Additional color mutants and a variety of reproductive mutants were also isolated and characterized. Male-sterile mutants had phenotypes ranging from apparently normal plants to those that produced no spermatia. Female-sterile mutants also included a variety of phenotypes, some plants having post-fertilization malfunctions during the development of the carposporophyte. Only a fraction of the sterility mutations have been phenotypically or genetically characterized, but some are straightforwardly inherited as stable, nuclear, single-gene defects. From the genetic recombination pattern, one female-sterile mutant may be loosely linked (39 cMorgans) to the grn 1 marker gene. Male sterility very effectively eliminated selfing without affecting the production of carpospores in crosses, thereby overcoming one of the most serious genetic difficulties in working with this monoecious species.  相似文献   
2.
Although the insertion of heme into proteins enables their function in bioenergetics, metabolism, and signaling, the mechanisms and regulation of this process are not fully understood. We developed a means to study cellular heme insertion into apo-protein targets over a 3-h period and then investigated how nitric oxide (NO) released from a chemical donor (NOC-18) might influence heme (protoporphyrin IX) insertion into seven targets that present a range of protein structures, heme ligation states, and functions (three NO synthases, two cytochrome P450's, catalase, and hemoglobin). NO blocked cellular heme insertion into all seven apo-protein targets. The inhibition occurred at relatively low (nM/min) fluxes of NO, was reversible, and did not involve changes in intracellular heme levels, activation of guanylate cyclase, or inhibition of mitochondrial ATP production. These aspects and the range of protein targets suggest that NO can act as a global inhibitor of heme insertion, possibly by inhibiting a common step in the process.  相似文献   
3.
Plasmonics - This paper investigates the behavior of the surface plasmon polaritons (SPPs) on dielectric-metal interface using Ag thin film on glass substrate. The Kretschman configuration, which...  相似文献   
4.
The 6-shogaol, is a flavanone type flavonoid that is abundant in citrus fruit and has a wide range of pharmacological effects. The present study attempted to evaluate the antiurolithic effect of 6-shogaol on ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. The efficacy of 6-shogaol 50 mg/kg and 100 mg/kg was studied in EG 0.75% (V/V) and AC 1% (W/V) experimentally induced urolithiasis in rats for 21 days. The weight difference, urine volume, the levels of calcium, phosphate, magnesium, oxalate and uric acid in urine was observed. The blood urea nitrogen, creatinine, uric acid in serum and levels of malondialdehyde (MDA) and glutathione (GSH) were also measured. Histopathological analyses in kidneys were also performed. The rats weights were higher in the 6-shogaol groups than the urolithiasis group. EG caused a significant increase in serum creatinine (p < 0.05), BUN (P < 0.001), and uric acid (p < 0.01) while treatment with Cystone (750 mg/kg), and 6-shogaol (50 and 100 mg/kg) showed the significant reduction in increased serum levels of creatinine (p < 0.001), uric acid (p < 0.01) and BUN (p < 0.001). Administration of EG and AC showed statistically significant (p < 0.001) elevated levels of MDA and reduction in GSH levels. Treatment of Cystone (750 mg/kg), and 6-shogaol (50 and 100 mg/kg) significantly (p < 0.001) reduced MDA levels and an increase GSH levels as compared to EG and AC-treated group. The histological findings further attested antiurolithiatic properties of 6-shogaol. The present study attributed clinical shreds of evidence first time that claiming the significant antiurolithic effect of 6-shogaol and could be a cost-effective candidate for the prevention and treatment of urolithiasis.  相似文献   
5.
Abstract

Acinetobacter baumannii is a biofilm forming multidrug resistant (MDR) pathogen responsible for respiratory tract infections. In this study, aluminium oxide nanoparticles (Al2O3 NPs) were synthesized and characterized by TEM and EDX and shown to be spherical shaped nanoparticles with a diameter < 10?nm. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) for the Al2O3 NPs ranged between 125 and 1,000?µg ml?1. Exposure to NPs caused cellular membrane disruption, indicated by an increase in cellular leakage of the contents. Biofilm inhibition was 11.64 to 70.2%, whereas attachment of bacteria to polystyrene surfaces was reduced to 48.8 to 51.9% in the presence of NPs. Nanoparticles also reduced extracellular polymeric substance production and the biomass of established biofilms. The data revealed the non-toxic nature of Al2O3 NPs up to a concentrations of 120?µg ml?1 in HeLa cell lines. These results demonstrate an effective and safer use of Al2O3 NPs against the MDR A. baumannii by targeting biofilm formation, adhesion and EPS production.  相似文献   
6.
Plasmonics - Effect of different gold (Au) grating structures on light absorption in solar cell is investigated by finite elemental analysis using COMSOL multiphysics-RF module. The geometry of the...  相似文献   
7.
Helicobacter pylori (H. pylori) causes gastric mucosa inflammation and gastric cancer mostly via several virulence factors. Induction of proinflammatory pathways plays a crucial role in chronic inflammation, gastric carcinoma, and H. pylori pathogenesis. Herbal medicines (HMs) are nontoxic, inexpensive, and mostly anti-inflammatory reminding meticulous emphasis on the elimination of H. pylori and gastric cancer. Several HM has exerted paramount anti-H. pylori traits. In addition, they exert anti-inflammatory effects through several cellular circuits such as inhibition of 5′-adenosine monophosphate-activated protein kinase, nuclear factor-κB, and activator protein-1 pathway activation leading to the inhibition of proinflammatory cytokines (interleukin 1α [IL-1α], IL-1β, IL-6, IL-8, IL-12, interferon γ, and tumor necrosis factor-α) expression. Furthermore, they inhibit nitrous oxide release and COX-2 and iNOS activity. The apoptosis induction in Th1 and Th17-polarized lymphocytes and M2-macrophagic polarization and STAT6 activation has also been exhibited. Thus, their exact consumable amount has not been revealed, and clinical trials are needed to achieve optimal concentration and their pharmacokinetics. In the aspect of bioavailability, solubility, absorption, and metabolism of herbal compounds, nanocarriers such as poly lactideco-glycolide-based loading and related formulations are helpful. Noticeably, combined therapies accompanied by probiotics can also be examined for better clearance of gastric mucosa. In addition, downregulation of inflammatory microRNAs (miRNAs) by HMs and upregulation of those anti-inflammatory miRNAs is proposed to protect the gastric mucosa. Thus there is anticipation that in near future HM-based formulations and proper delivery systems are possibly applicable against gastric cancer or other ailments because of H. pylori.  相似文献   
8.
In the present contribution, multicomplex-based pharmacophore studies were carried out on the structural proteome of Plasmodium falciparum 1-deoxy-D -xylulose-5-phosphate reductoisomerase. Among the constructed models, a representative model with complementary features, accountable for the inhibition was used as a primary filter for the screening of database molecules. Auxiliary evaluations of the screened molecules were performed via drug-likeness and molecular docking studies. Subsequently, the stability of the docked inhibitors was envisioned by molecular dynamics simulations, principle component analysis, and molecular mechanics-Poisson-Boltzmann surface area-based free binding energy calculations. The stability assessment of the hits was done by comparing with the reference (beta-substituted fosmidomycin analog, LC5) to prioritize more potent candidates. All the complexes showed stable dynamic behavior while three of them displayed higher binding free energy compared with the reference. The work resulted in the identification of the compounds with diverse scaffolds, which could be used as initial leads for the design of novel PfDXR inhibitors.  相似文献   
9.
Elevated fasting blood glucose (FBG) is associated with increased risks of developing type 2 diabetes (T2D) and cardiovascular-associated mortality. G6PC2 is predominantly expressed in islets, encodes a glucose-6-phosphatase catalytic subunit that converts glucose-6-phosphate (G6P) to glucose, and has been linked with variations in FBG in genome-wide association studies. Deletion of G6pc2 in mice has been shown to lower FBG without affecting fasting plasma insulin levels in vivo. At 5 mM glucose, pancreatic islets from G6pc2 knockout (KO) mice exhibit no glucose cycling, increased glycolytic flux, and enhanced glucose-stimulated insulin secretion (GSIS). However, the broader effects of G6pc2 KO on β-cell metabolism and redox regulation are unknown. Here we used CRISPR/Cas9 gene editing and metabolic flux analysis in βTC3 cells, a murine pancreatic β-cell line, to examine the role of G6pc2 in regulating glycolytic and mitochondrial fluxes. We found that deletion of G6pc2 led to ∼60% increases in glycolytic and citric acid cycle (CAC) fluxes at both 5 and 11 mM glucose concentrations. Furthermore, intracellular insulin content and GSIS were enhanced by approximately two-fold, along with increased cytosolic redox potential and reductive carboxylation flux. Normalization of fluxes relative to net glucose uptake revealed upregulation in two NADPH-producing pathways in the CAC. These results demonstrate that G6pc2 regulates GSIS by modulating not only glycolysis but also, independently, citric acid cycle activity in β-cells. Overall, our findings implicate G6PC2 as a potential therapeutic target for enhancing insulin secretion and lowering FBG, which could benefit individuals with prediabetes, T2D, and obesity.  相似文献   
10.
This study identified the influences of neonatal and maternal factors on premature birth and low birth weight in New South Wales, Australia. Bivariate and multivariate analyses were used to explore the association of selected neonatal and maternal characteristics with premature birth and low birth weight. The findings of this study showed that premature birth and low birth weight rate significantly varied by infant sex, maternal age, marital status, Aboriginality, parity, maternal smoking behaviour during pregnancy and maternal hypertension. First-born infants, and infants born to mothers aged less than 20 years, or who were single, separated/divorced, Aboriginal or who smoked during the pregnancy, were at increased risk of being premature or of low birth weight. This study also found that risk factors for premature births and low birth weight were similar in both singleton and multiple births. Gestational age was confirmed to be the single most important risk factor for low birth weight. The findings of this study suggest that in order to reduce the incidence of low birth weight and premature births, health improvement strategies should focus on anti-smoking campaigns during pregnancy and other healthcare programmes targeted at the socially disadvantaged populations identified in the study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号